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Toward dynamic recalibration
and three-dimensional reconstruction
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We present a method for dynamic recalibration and 3D reconstruction via a structured light system. Assuming
that the light planes cast from the digital light projector have been calibrated off-line, we show that the focal
length, aspect ratio, and all motion parameters of the camera can be determined on-line. Then the 3D recon-
struction can be carried out by either a traditional triangulation method or a more efficient transformation-
based method. In the latter method, a single image is sufficient for the whole process of calibration and recon-
struction. Thus a hand-held camera can be used. Computer simulation and real data experiments were carried
out to validate the method. © 2007 Optical Society of America

OCIS codes: 000.3110, 110.0110, 120.0120, 120.4640, 150.0150, 330.0330.
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. INTRODUCTION
amera calibration and 3D reconstruction have been
idely investigated, and many methods have been pro-
osed in recent years. These methods can be classified
nto passive and active methods. In general, the passive

ethods make use of special camera motion1 or a struc-
ured scene2,3 for camera calibration. Since multiple im-
ges are generally involved, the passive methods suffer
rom the ambiguity of correspondences between feature
oints in the images. This is a difficult problem to solve as
here is a trade-off between the disparity and overlapped
rea size, especially when dealing with free-form texture-
ess surfaces.

To avoid such ambiguity, an active vision system con-
isting of a projector and a camera can be adopted. To pre-
isely reconstruct a 3D model with such an active vision
ystem, it needs to be carefully calibrated by some special
alibration device.4,5 The traditional calibration proce-
ures are usually carried out off-line, and they have to be
epeated each time the setting is changed. Frequent reca-
ibration in using such a system is a laborious and tedious
ask. As a result, the applications of such a system are
imited, since the configuration and parameters must be
ept unchanged during the entire measurement process.
hen working in an unknown environment, e.g., in un-

erwater exploration by a vision-guided robot, changes of
he position and configuration of the vision sensor become
ecessary. It is thus desirable for a vision system to have
he ability of self-recalibration6,7 or uncalibrated
econstruction8 without requiring a special calibration de-
ice.

By defining an image-to-world transformation between
3D point on the stripe light plane and its corresponding
ixel in the image, researchers have proposed some meth-
ds for calibrating their structured light systems. Chen
nd Kak9 proposed a line-to-point method to calibrate this
1084-7529/07/030785-9/$15.00 © 2
ransformation for the vision system of a laser range
nder given six or more known world lines. Reid10 used
he plane-to-point method to determine this transforma-
ion where the laser range finder was mounted on a free-
anging automated guided vehicle whose position relative
o the world coordinate frame was known. Based on cross-
atio invariance and point-to-point calibration, Huynh et
l.11 also proposed a calibration method using four known
oncoplanar sets of three collinear world points in the
cene. These methods can be considered as static calibra-
ion since any adjustment of their systems, e.g., autofocus
r movement of the camera, will not be allowed when per-
orming the vision tasks. This causes inconvenience in
ome practical applications. To allow on-line adjustment
f the parameters of the vision system, we proposed in our
revious work a way to dynamically compute the different
omponents of the image-to-world transformation by as-
uming two known planes in the scene.12 Once all the
omponents had been recovered, the transformation ma-
rix can be obtained by simple matrix multiplication. In
his paper, we follow a similar framework for calibrating
he structured light system by assuming only one known
lane in the scene. Here, the generic formula for the
lane-to-image homography is derived first in the system.
hen the variable parameters, i.e., the focal length, as-
ect ratio, and all motion parameters of the camera, are
omputed by analyzing the scene plane-to-image homog-
aphy. Finally, the stripe light plane-to-image homogra-
hy is computed from the generic formula, which, in turn,
nables the computation of the on-line image-to-world
ransformation. Both the previous and this method use a
ingle image for the 3D reconstruction. However, they dif-
er in two important aspects: (1) The method here pro-
ides calibration for the variable parameters of the cam-
ra while the previous one does not. (2) The relaxed
equirement of only one known plane with our method is
007 Optical Society of America
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uch easier to meet, promising wider practical applica-
ions. With a closed-form solution, our method avoids the
ime-consuming nonlinear optimization. Hence, a hand-
eld camera can be used in a dynamic environment.
The remainder of the paper is organized as follows: Sec-

ion 2 introduces the system models. Section 3 presents
he reconstruction principle. Section 4 gives the procedure
or dynamic calibration and 3D reconstruction. Section 5
eports the results of computer simulations and real data
xperiments. Finally, we conclude this paper in Section 6.

Throughout this paper, scalars are denoted by normal
ace symbols while vectors and matrices are represented
y lowercase and uppercase boldface letters. A roman su-
erscript T represents the transpose of a vector or matrix.
he subscripts c, p, and s, respectively, denote the
amera-related, projector-related, and scene-plane-
elated elements. The notations M and m denote the 3D
nd 2D points, respectively.

. SYSTEM MODEL
. Structure of the Vision System
igure 1 illustrates the layout of the proposed vision sys-
em, which mainly consists of a CCD camera and a digital
ight projector (DLP). Suppose there is a blank plane in
he scene, e.g., the ground plane or desktop. By blank
lane, we mean that no special structure or feature points
egarding the plane are required. The projector is used to
lluminate the scene with a light pattern that will produce
wo sets of light planes, in the horizontal and vertical di-
ections, respectively. Each light plane produces a de-
ormed curve on the object’s surface and one or more line
egments on the plane (see the bold line segments in Fig.
). These line segments and curves, together with other
ight planes, will intersect at many feature points. Some
f these feature points, which are used for measuring the
bject, will be on the surface of the object, while some will
ie on the plane that will be used for calibrating the sys-
em. The camera captures the illuminated scene in its im-
ge plane.

. Camera Model
e use the classical pinhole model for our camera. Let Kc

e its calibration matrix. The principal point of the cam-
ra is assumed to be unchanged. This assumption can be
atisfied to a sufficient extent in practice and has already

Fig. 1. (Color online) Layout of the proposed vision system.
een used by many researchers.13,14 For example, in re-
ent research,14 a method was proposed for calibrating
he focal length assuming all other parameters are known
nd fixed. Therefore, we can ignore the effect of the prin-
ipal point by simple point translation. Then the calibra-
ion matrix becomes

Kc = �
�f 0 0

0 f 0

0 0 1
� . �1�

Assuming that the rotation matrix and translation vec-
or of the camera are Rc and tc, then a 3D arbitrary point
˜ = �M1 M2 M3 1�T and its corresponding image point
˜ = �m1 m2 1�T in the camera are related by the follow-
ng projection equation:

�m̃ = Kc�Rc tc�M̃, �2�

here � is a nonzero scale factor.

. RECONSTRUCTION PRINCIPLE
. Image-to-World Transformation
et the world coordinate frame be Fw with �x ,y ,z� repre-
enting its three coordinate axes in the scene. We treat
he light planes emitted from the projector and the scene
lane as ordinary planes (without any special features re-
uired) and assume that their equations have been calcu-
ated by a previous method.12 Let � be any one plane in-
olved. Assuming M= �M1 M2 M3�T is a known point on
, we define a local frame F3� with its origin at M, whose
Y axes lie on the plane and whose Z axis aligns with its
ormal vector. In what follows, we discuss the principle of
he 3D reconstruction.

Let n= �n1 n2 n3�T be the vector of the plane � in the
orld frame Fw. Since the direction of the z axis of the

rame Fw is z= �0 0 1�T, the angle between n and the z
xis is �=cos−1�nTz�=cos−1�n3�.
The unit vector that is perpendicular to both the z axis

f the frame Fw and the normal vector n is r= �n�z� / �n
z�.
Then the rotation matrix from the world frame Fw to

3� can be given by the Rodrigues formula

R = cos � · I + �1 − cos ��rrT + sin � · �r��, �3�

here I represents a 3�3 identity matrix, and �r�� is the
kew matrix of vector r given by

�r�� = �
0 − r3 r2

r3 0 − r1

− r2 r1 0
� .

et Mi= �Mi1 Mi2 Mi3�T be an arbitrary point on � and
˜

i= �Mi1 Mi2 Mi3 1�T be its homogeneous form. Ex-
ressed in F3�, this point will be

Mpi = RMi − RM̄. �4�

rom Eq. (4), we have
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M̃pi = TM̃i, �5�

here

T = �R − RM̄

0T 1 	
s a 4�4 matrix. It transforms a point from the world
rame Fw to the specific plane frame F3� (Fig. 2). It should
e noted that M̃pi has the following coordinate form:

M̃pi = �mp1 mp2 0 1�T. �6�

e can rewrite Eq. (5) as follows:

m̃pi = STM̃i, �7�

here m̃pi= �mp1 mp2 1�T and

S = �
1 0 0 0

0 1 0 0

0 0 0 1
� .

The above equation describes the relationship for a
oint between the world frame Fw and the planar frame
3�. In this paper, it is used when computing the homog-
aphy between the scene and the image planes.

According to projective geometry, there exists a unique
omography transformation between the plane and its

mage. Let it be H and let m̃ci be the correspondent point
f m̃pi in the camera image. Then we have

m̃ci = �iHm̃pi. �8�

rom Eqs. (7) and (8), we have

M̃i =
1

�i
Twim̃ci, �9�

here

Twi = T−1STH−1. �10�

Here, Twi is called the image-to-world transformation.
t transforms a pixel in the image to its corresponding 3D
oint on the space plane relative to the world frame Fw. It
s a 4�3 matrix and can be determined up to a nonzero
cale. Therefore, it has 11 degrees of freedom.

ig. 2. Relationship between Fw and F3� where T is a function
f R and M̄.
. Analysis of the System
rom Eq. (9), we can see that, once the transformation
wi is recovered, the 3D reconstruction is straightfor-
ard, i.e., simply by matrix multiplication. From Eq. (10),
e can see that Twi has three components: the transfor-
ation T, constant matrix S, and homography H. From
qs. (3) and (5), we can see that the transformation T de-
ends only on the equation of the plane. In our system
onfiguration, we assume that the scene plane and the
ight planes of the projector are calibrated and kept fixed.
herefore, the transformation T will remain constant
nce it has been recovered in the initial calibration. We
ssume that some intrinsic or extrinsic parameters of the
amera should be adjusted to achieve a better perfor-
ance in different cases. As a result, the homography H
ill vary in practical applications and needs to be cali-
rated on-line. In what follows, we will discuss the way
or dynamically calibrating the homography and image-
o-world transformation.

. DYNAMIC RECALIBRATION
. Plane-Image Homography
rom Eq. (7), for an arbitrary point M̃i on the plane �, we
ave

M̃i = T−1STm̃pi. �11�

ubstituting Eq. (11) into Eq. (2), we get

�m̃ci = Kc�Rc tc�T−1STm̃pi. �12�

onsidering Eqs. (8) and (13), we have

�H = Kc�Rc tc�T−1ST, �13�

here � is a scale factor.
The above formula is an explicit expression of the

lane-to-image homography. It is a 3�3 matrix and can
e determined up to a nonzero scale factor. Since the
lane is arbitrary, the formula is applicable for both the
tripe light plane-to-image and scene plane-to-image ho-
ography. Therefore, we call it a generic homography.
Now, let the homography between the scene plane and

he image be Hs. As illustrated in Fig. 1, the light planes
roduce many 3D feature points on the scene plane. Since
he equations of the light planes and the scene plane are
etermined at the static calibration stage, the coordinates
f these points can be computed from these equations. For
xample, when a feature point M̃i is obtained, we can
ransform it by Eq. (7) to get m̃pi. The correspondent pixel
˜ ci of M̃i in the image can be extracted from the image.
hen the pair of points, i.e., m̃pi and m̃ci, gives two con-
traints on the homography Hs. If four or more pairs of
oints are considered, this homography can be deter-
ined in a least-squares sense. In what follows, we

resent our method for dynamic calibration assuming
hat the homography Hs has been obtained.

. Dynamic Recalibration of Camera Parameters
ccording to the formula of the transformation for the
cene plane in Eq. (5), we have
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Ts
−1 = �Rs

T M̄s

0T 1
	 ,

here Rs denotes the rotation matrix from the world
rame to that of the scene plane, and M̄s is any known
oint on the plane.
Let

Rc = �
r1

r2

r3
� Rs = �

r1s

r2s

r3s
� ,

here ri and ris are the ith row of the matrix Rc and Rs,
espectively. Let tc= �t1 t2 t3 �T.

From Eq. (13), we have

�Hs = �
�fr1r1s

T �fr1r2s
T

�f�r1M̄s + t1�

fr2r1s
T fr2r2s

T f�r2M̄s + t2�

r3r1s
T r3r2s

T r3M̄s + t3

� . �14�

From the first two columns of Eq. (14), we obtain

Rcr1s
T = �

�

�f
H11

�

f
H21

�H31

� , �15�

Rcr2s
T = �

�

�f
H12

�

f
H22

�H32

� , �16�

here Hij means the element on the ith row and jth col-
mn of the matrix Hs.
From Eqs. (15) and (16), we will get the following three

quations:

� �

�f
H11	2

+ ��

f
H21	2

+ ��H31�2 = 1, �17�

� �

�f
H12	2

+ ��

f
H22	2

+ ��H32�2 = 1, �18�

� �

�f	2

H11H12 + ��

f 	2

H21H22 + �2H31H32 = 0. �19�

In Eqs. (17)–(19), there are three unknowns, i.e., f, �,
nd �. From the three equations, we can obtain the solu-
ions,

f =
a2c1 − a1c2

b1c2 − b2c1
, �20�

� =
 b1c2 − b2c1
, �21�
a1b2 − a2b1
� = ±
 �2f2

�2f2H31
2 + �2H21

2 + H11
2 , �22�

here

a1 = H21
2 − H22

2 , b1 = H31
2 − H32

2 , c1 = H11
2 − H12

2 ,

a2 = H21H22, b2 = H31H32, c2 = H11H12.

Since both f and � should be positive, unique solutions
re obtained. As for �, its sign should make both sides of
q. (8) consistent, which means if �imc,i

T Hmp,i�0, the
ign is positive, otherwise, it is negative.

Then, we can scale the homography by �. Let Â=�Hs.
rom the first row of Eq. (14), we have

r1r1s
T =

1

�f
A11,

r1r2s
T =

1

f
A12,

�r1�2 = 1. �23�

e can obtain the solution for r1 from Eq. (23). Similarly,
e have the solution for r2 by

r2r1s
T =

1

f
A21,

r2r2s
T =

1

f
A22,

�r2�2 = 1. �24�

he third row of the rotation matrix is r3=r1�r2.
For the translation vector of the camera, we can obtain

t by comparing the third column of both sides in Eq. (14),
nd give as

t1 =
1

�f
Ã13 − r1M̄s,

t2 =
1

f
Ã23 − r2M̄s,

t3 = A33 − r3M̄s. �25�

To now, we have obtained all the variable parameters of
he camera. Then, the stripe light plane-to-image homog-
aphy can be computed according to its explicit formula,
o is the on-line image-to-world transformation matrix.

. Implementation Procedure
he implementation of the structured light system
ainly consists of two steps: static initial calibration and
uclidean reconstruction with dynamic recalibration of

he system. Assuming that the static calibration has been
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ccomplished, the procedure of dynamic recalibration and
uclidean 3D reconstruction consists of the following
even steps:

1. The object to be reconstructed is placed in front of
he scene plane and illuminated by the projector. Accord-
ng to the scene geometry, the camera may undergo a
igid motion, zooming and focusing to enable the sensor to
ully capture the illuminated scene. Then the scene image
s acquired.

2. Select four or more illuminated points on the scene
lane and transform them by Eq. (7). Then extract their
orrespondences in the image and computing the scene
lane-to-image homography by Eq. (8).
3. Calculate the focal length and aspect ratio of the

amera and the scale factor of the homography according
o Eqs. (20)–(22), then scale the homography.

4. Compute the first and second rows of the rotation
atrix, i.e., r1 and r2, by Eqs. (23) and (24) and the third

ow r3. Then we have the rotation matrix Rc.
5. Solve Eq. (25) for the translation vector tc of the

amera.
6. Compute the stripe light plane-to-image homogra-

hy by formula (13).
7. Compute the image-to-world transformation by for-
ula (10) and implement the Euclidean reconstruction by
q. (9).

. Discussion
ome researchers have discussed the camera calibration
ethod from plane-to-image homography using a struc-

ured planar pattern.2,3 They mainly took two steps to
olve this problem, i.e., first determining the image of ab-
olute conic, followed by computing the variable param-
ters of the camera. In this paper, with an ordinary plane,
he variable parameters are found by analyzing the scene
lane-to-image homography directly in the structured
ight system. Then the on-line image-to-world transfor-

ation is determined, and the 3D reconstruction can be
mplemented immediately.

. EXPERIMENTS
n the first group of experiments, we show that acceptable
esults can be obtained for dynamic calibration with our
ethod. Then the remaining experiments are focused on

he validity of the calibration and 3D reconstruction.
hese experiments were carried out on both numerical
imulation and real image data.

. Experiments with Simulation Data
e first carried out some numerical simulations to verify

he validity of our method. The simulated system has the
ollowing parameters. The focal length, aspect ratio, and
rincipal point of the camera were 950, 1.1, and (300,
00), respectively. The resolution of the image was 740
480. The orientation and position of the camera were

et to be �� /4 ,� /5 ,� /6� and (100, 200, 300). Two sets of
ight planes from the projector, i.e., eight in the horizontal
irection and eight in the vertical direction, were as-
umed to be known. The object was represented by a set
f 3D points intersected by the light planes and some
ther random planes. The equation of the known scene
lane was denoted as Z=X+2Y+250. In the experiments,
e defined the residual errors as the discrepancies be-

ween the computed results and their theoretical values,
here the absolute errors were taken for scalars, and the
orm of the errors were taken for vectors or matrices.
In the simulation study, we find that the more accurate

he scene plane-to-image homography is, the better cali-
ration results we will have. It is known that a more ac-
urate estimation of the homography can be obtained if
ore point pairs are used. In general, the larger the area

f the plane in the image, the more feature points can be
xtracted. In practice, however, the available points are
imited in number. Therefore, we conducted some tests on
he effects of the number of points on the performance of
he algorithm. Here, the number of points ranged from 10
o 60. For each case, 100 trials were run. A constant level
f Gaussian noise, N�0,0.5�, was added to the image pix-
ls. The results on the calibration and reconstruction are
hown in Fig. 3, where data1, data2, data3, and data4
resent the average residual errors for the focal length,
otation angles, translation vector, and 3D reconstruction,
espectively. This figure shows that when the number of
oints increases from 10 to 60, the residual errors in the
alibrated parameters and 3D reconstruction results de-
rease sharply. Acceptable results can be obtained when
he number is 40 or more. For example, less than 1 mm
rrors are obtained in the 3D reconstruction in this range.
herefore, we will use 40 points for the subsequent ex-
eriments.
Next, we tested the robustness of our method against

ifferent levels of noise on the image pixel. Here, Gauss-
an noise whose level ranges from 0 to 1 pixel was added
o the image pixels. For each noise level, we performed
00 trials and computed the average residual error. The
esidual errors in the calibration and reconstruction are
hown in Fig. 4(a). It can be seen that when there is no
oise in the data, the errors are very small. The residual
rrors in the calibration and reconstruction increase with
he noise level. To alleviate the effect of noise, two meth-
ds should be adopted: (1) extracting feature points with

ig. 3. (Color online) Residual errors as a function of the num-
er of used points.
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he subpixel accuracy method, e.g., by the Harris corner
nder method; (2) extracting as many points as possible
nd computing the scene plane-to-image homography in
he least-squares sense.

In this paper, we assume that the principal point of the
amera is fixed. However, the principal point may deviate
bit from its original position when the camera’s focus is

hanged. Some researchers have studied the effect of this
eviation.15,16 In this work, we have tested this effect by
umerical simulations. Here, we assumed that the prin-
ipal point was perturbed by Gaussian noise ranging from
to 5 pixels. For each noise level, 100 trials were run, and

he average residual errors in the calibration and recon-
truction were computed as shown in Fig. 4(b). From this
gure, we can see that the residual errors of calibration
nd reconstruction increase with the increased deviation
f the principal point but still within a reasonable range.

ig. 4. (Color online) Residual errors in the dynamic calibration
nd 3D reconstruction. (a) Residual errors as a function of noise
evels, (b) effects of deviation of the principal point.
or example, when the focal length deviated by 2.3879
gainst its theoretical value of 950, the average error in
he 3D reconstruction was at most 1 mm. Hence, small
eviation of the principal point is tolerable in our method.

. Real Data Experiments

. System Configuration
n the real data experiments, the vision system consists of
wo major components, i.e., a PULNIX TMC-9700 CCD
amera and a PLUS V131 DLP projector (see Fig. 5). The
bject to be reconstructed is placed in front of the scene
lane. The projector is controlled by a computer to project
bundle of structured light onto the scene. The camera

aptures the illuminated scene by an image. Assuming
hat the projection points have been segmented into the
oints on the scene plane and those on the object’s surface
rom the image, the procedure for system calibration and
D reconstruction of the object can be implemented. As
he 3D reconstruction is performed using homographic
ransformation rather than the triangulation method, the
amera’s orientation and position do not affect the accu-
acy significantly. Hence, the camera can be held by hand
nd moved freely in the experiments.

. Design of Light Pattern
or generating the light pattern, there are many codifica-

ion methods, including the time-multiplexing method,
patial neighborhood method, and direct codification
ethod.17 Since dynamic scene or moving objects may be

nvolved in this system, we implemented a spatial neigh-
orhood method where the light pattern formed a special
ase of perfect maps, and all the pattern information was
ncoded into a single shot.18 The algorithm can be sum-
arized as follows.
Let 	= �1,2, . . . ,
 be a set of color primitives (for ex-

mple, 1�red, 2�green, 3�blue, etc.). Given these color
rimitives, a 1D string is constructed such that each trip-
et of adjacent colors is distinct from every other triplet.
his string is considered as the first row in the light pat-

ern, and its size is 
3+2. Similarly, a second string is con-
tructed such that each pair of adjacent colors is distinct
rom every other pair, and the size is 
2+1. For the other
ows in the pattern, modulo operation is iteratively per-
ormed with the first row and each element of the second
tring. Then we have the light pattern whose size is �
3

2�� �
2+1�.

ig. 5. (Color online) Configuration of our structured light
ystem.
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In practice, a trade-off needs to be made between the
esolution of the pattern, i.e., the number of color primi-
ives used and the complexity in the image processing. In
eneral, the larger the number of color primitives used,
he more complex the image processing and the more sen-
itive it is to noise. To preserve a good resolution and fa-
ilitate image processing, seven different colors, i.e., red,
reen, blue, white, cyan, magenta, and yellow were used.
ith the coding method, we can have a matrix of 50
345. Considering the requirement of our vision system,
40�51 submatrix, in which any 3�3 neighbor is

nique and any two consecutive blocks are distinct, is se-
ected. Figure 6 gives a screen shot of the light pattern.

It should be noted that rather than color dots,18 we use
olor-encoded grid blocks. The grid blocks can be seg-
ented more easily by edge detection. The encoded points

re the intersection of these edges, so that they can be
ound very accurately. When projecting dots, their cen-
roids must be located. When a dot appears only partially
n the image, its centroid will be erroneous. Moreover, the
rid techniques allow adjacent cross points to be located
y tracking the edges, but this is not the case for dot rep-
esentation. This feature not only helps reduce the com-
lexity in the image processing but also simplifies the de-
oding process. To decode the light pattern, a code word is
efined by the color value of a grid block and its eight
eighbors (north, south, west, east, northwest, southwest,
ortheast, and southeast). Then, a lookup table can be
onstructed containing the code words and their row’s and
olumn’s indexes in the pattern. Since the first and last
ows and columns in the pattern need not be considered,
he table has 1862 elements.

. Experimental Results
n the first experiment, with the variable parameters cali-
rated by our method, an industrial workpiece with
nown dimensions was used for testing [Fig. 7(a)]. The
omputer-aided design (CAD) model of the reconstructed
esult is given in Fig. 7(b), From this figure, we can see
hat the accuracy of the reconstruction is acceptable. For
xample, the neighboring surfaces of the model are nearly
erpendicular to each other as in the real workpiece.
ere, two geometrical elements, which were labeled as
eight and width, are evaluated. The measured quanti-
ies and the relative errors against their ground truth are
isted in Table 1. It can be seen from the result that the
ccuracy of the reconstruction is acceptable.
In the second experiment, we tested on a general object

ith free-form surfaces, i.e., a fan model in Fig. 8(a). The
bject with the light pattern cast is shown in Fig. 8(b).
ere, a total of 650 feature points from the fan’s surface

ig. 8. (Color online) Experiment on a fan model. (a) fan model
f the clouds.
ere extracted for reconstruction. Figure 8(c) shows the
D point cloud reconstructed using parameters obtained
rom the dynamic calibration. Figure 8(d) is the CAD
odel of the clouds. Here the ground truth of these points
as not known. To evaluate the accuracy, we recon-

tructed them using parameters obtained by a static cali-
ration method and then computed the error distances
etween these two sets of points. Here, the mean and
tandard deviations of all these error distances were
valuated and are given in Table 2. For comparison, we
isted our result together with that from Huynh and
o-workers’11 third experiment, since it was obtained un-

Table 1. Measurements and Relative Errors

lements
Actual Value

(mm)
Measured Value

(mm)
Relative Error

(%)

height 35 35.6501 1.86
width 45 45.8913 1.98

ig. 6. (Color online) Screen shot of a color-encoded light
attern.

ig. 7. (Color online) Experiment on a workpiece. (a) Workpiece
odel, (b) CAD model of the restructured result.

age captured, (c) reconstructed 3D point clouds, (d) CAD model
, (b) im
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er a similar condition. From this table, we can see that
he mean errors by the two methods are consistent (al-
hough ours is a bit larger), while the standard deviation
f our method is significantly smaller than that of Huynh
t al. This demonstrates the validity and accuracy of our
cheme.

We also conducted another experiment to demonstrate
he use of the system in dynamically changing configura-
ions [Fig. 9(a)]. Two parallel planes were reconstructed
nd their distance measured. In this test, the two planes
ere static (thus with a constant distance between them),
hile the relative pose between the camera and the pro-

Table 2. Comparison of the Error Distance

ifferent Method
Mean Value

(mm)

Standard
Deviation

(mm)

uynh and co-workers’ results 1.778 1.220
ur results 1.9878 0.6077

ig. 9. (Color online) Example of the demonstration system. (a)
rofile of the system setup, (b) measured distance between the

wo planes.
ector was changed all the time via the handheld camera.
he results of 30 samples were recorded and shown in
ig. 9(b). Despite the changes in the camera pose, the
easured distance between the two planes turned out to

e relatively constant with a mean of 60.52 mm and the
tandard deviation of 0.76 mm. This result is quite satis-
actory, considering the fact that no special effort was
ade in the initial calibration of the projector and the

cene plane.

. CONCLUSIONS
n this paper, we present a method for dynamic recalibra-
ion and 3D reconstruction for a structured light vision
ystem. The advantage of our method is that the dynamic
ecalibration and 3D reconstruction are formulated in a
losed-form solution, which avoids the possible conver-
ence problem with an iterative algorithm. In addition,
ur method requires only a single image for the whole
rocess of dynamic calibration and reconstruction. Thus a
andheld camera can be used in this system. These fea-
ures are especially important for some time critical tasks
n a dynamic scene.

With the relaxed requirement of only one known plane,
he proposed method is potentially useful for many prac-
ical applications. For example, in mobile robot naviga-
ion, we can assume that the ground plane of the floor or
he road surface always exists and remains unchanged
elative to the projector mounted on the robot during its
avigation, which satisfies the requirement here. Besides,

t is particularly applicable for a desktop vision system in
hich the desktop can be taken as the known scene plane.
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