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a b s t r a c t

Motion trajectories provide a key and informative clue in motion characterization of humans, robots and
moving objects. In this paper, we propose some new integral invariants for space motion trajectories,
which benefit effective motion trajectory matching and recognition. Integral invariants are defined as the
line integrals of a class of kernel functions along a motion trajectory. A robust estimation of the integral
invariants is formulated based on the blurred segment of noisy discrete curve. Then a non-linear
distance of the integral invariants is defined to measure the similarity for trajectory matching and
recognition. Such integral invariants, in addition to being invariant to transformation groups, have some
desirable properties such as noise insensitivity, computational locality, and uniqueness of representa-
tion. Experimental results on trajectory matching and sign recognition show the effectiveness and
robustness of the proposed integral invariants in motion trajectory matching and recognition.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A motion trajectory, which records a sequence of moving
positions of a tracked object, provides a compact and representa-
tive clue for motion characterization. It has been extensively
studied for describing activities, behaviors, and motion patterns
in different applications such as learning motion patterns [1,2],
human action recognition [6,7], human–robot interaction [3],
gesture recognition [4,8], and trajectory retrieval [49]. As these
applications suggest, motion trajectories play an important role in
determining the contents of video, perceiving similar motion
patterns, retrieving actions, and so on. Min et al. [6] employed
motion trajectories tracked from some body joints as features
input to a discriminant model for classifying human activities.
Yang et al. [8] modeled a gesture recognition system using a time-
delay neural network, where motion patterns are learned from
hand trajectories. Oikonomopoulos et al. [9] also tracked hand
trajectories to understand human actions based on the RVM
discriminative model [10]. Apart from modeling human actions,
motion trajectories of objects of interest are often utilized to build

some activity models to understand and retrieve motion patterns
in video surveillance [13,49] and for information visualization [5].
Nevertheless, in most related work motion trajectories were often
directly used in the raw data form with naïve processing. The raw
data rely on the absolute positions of motions in a coordinate
system, and are, therefore, ineffective in computation and are
sensitive to noise. Not surprisingly, they will change under
different viewpoints. Therefore, most space motion trajectory
features cannot be captured directly by the raw data.

Shape description has received considerable attention in com-
puter vision for shape matching and classification. In this regard,
shape descriptors for describing object contours are closely related
to our research. In [21,18], Curvature scale space (CSS) was devel-
oped for shape matching. Curvatures of a shape contour at different
scales are produced by convolving the shape contour with a series
of Gaussian kernels in a coarse to fine manner, where the shape
contour is deformed at varying scales, yielding undesirable distor-
tions in the shape. By chain code [11], one can digitize a space curve
in terms of relative direction changes of segmented lines. However
the relative changes with respect to neighboring lines limited the
use of chain code for complex space curves. Using algebraic curve,
such as B-spline [24] and Bezier curve [12], a shape contour can be
approximated through some key control points. These curve fitting
methods show non-uniqueness when the sampling rate of motion
trajectories varies or partial occlusions exist in a trajectory, because
their approximation accuracies depend on those key control points.
Shape context [16] was introduced to capture the histogram bins of
neighboring points at each reference point of a curve using a log-
polar weight kernel. As a local descriptor, shape context possesses
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rich invariant properties, and is capable of handling occlusions, but
it is not the best way to describe a space trajectory due to its coarse
distributions captured for a shape. Therefore, even though these
shape descriptors have shown good performance in specific appli-
cations, they are incapable of fully capturing motion trajectory
features in 3D Euclidean space (3D), due to their limited represen-
tation capability for simple shape contours (Chain code and shape
context), sensitivity to noise (CSS and chain code) and non-
uniqueness (B-spline). Several moment invariants for 3D curves
under similarity transformations were derived in [47], but they
are global descriptors with two limitations: high-order moments
are sensitive to noise [48] and they cannot admit invariant to
occlusions. In addition, transform functions based on Fourier and
Wavelet [22,23] extracted global features from a trajectory, but
meanwhile the local features are lost. They are also not stable with
respect to noise due to high-order Fourier coefficients involved. All
of these shape or curve descriptors were initially constructed for
simple planar shapes. They are thus insufficient and non-compact
to semantically represent complex 3D space motion trajectories.
Therefore, they cannot be extended straightforward to our research.
As discussed above, a good descriptor for free-form motion trajec-
tories is expected to be robust to noise and occlusions, and invariant
to specific group transformations. Therefore, such a descriptor
should necessarily satisfy a number of criteria, some of which are
consistent with CSS [21]: uniqueness, invariance, noise resistance,
and locality, and it needs to be applicable to both planar and space
trajectories.

In this paper, we first review the related literature in invariants,
and claim our contributions in invariant representation in Section 2
before proposing the definition and estimation of the new integral
invariants in Section 3. In Section 4, we propose the similarity
measure that allows warping motion trajectories with various
temporal lengths onto each other. We conduct two experiments
in Section 5 to show the properties, robustness of the proposed
integral invariants through trajectory matching, and their effective-
ness in sign recognition. Finally, we conclude the paper in Section 6.

2. Previous work on Invariants and our contributions

Invariants have played an important role for various applications
in computer vision ranging from shape representation and match-
ing [17] to object recognition [25] and gesture recognition [19].
Consequently plentiful features that are invariant to specific trans-
formations (affine, similarity, Euclidean) have been investigated in
[37,38,40–42]. Two invariant local descriptors related to our
research are differential invariants and integral invariants, which
have been investigated and put into applications in motion trajec-
tory representation and recognition [32,33]. However, there is a
major roadblock that is noise in motion trajectories. Whenever
noise is present to affect the spatio-temporal primitives of motion
trajectories, differential invariants would be dominated by even
small-scale perturbations in that the computation of differential
invariants involves high-order derivatives and hence are very
sensitive to noise, even though they are approximated [25,27] in
terms of joint invariants. Some approaches have tried to overcome
this drawback for differential invariants by the introduction of the
scale-space smoothing in [39], but a more effective and robust
method has so far not been available in principle. There has been
much work to attempt deriving integral invariants [14,15,41] based
on integral operation. In [41], potentials were proposed to obtain
integral invariants for planar shapes via integrating the potentials of
the contour curves of shapes, but these integral invariants are global
descriptors. Integral invariants for closed planar shapes [14,15] were
derived by performing integration of a class of local kernels along
the shape boundary represented by a planar curve, where the

locality is achieved by restricting integration to local neighborhoods
at each point of the curve. Nevertheless, they cannot be extended to
represent motion trajectories in 3D case in that the fact of open
contours and varying orientations of space trajectories complicates
the problems. Consequently, the idea of defining a class of kernel
functions along a space trajectory, which admits invariant under
group transformations, remains unresolved. Developing an effec-
tive, robust invariant representation for space trajectory matching
and recognition is a promising topic. In our approach, we will
extend the integral invariants for planar closed shapes [14] to define
some new integral invariants for free-form space trajectories in 3D
Euclidean space.

In this paper, we propose some new integral invariants for space
motion trajectories using line integrals of a class of kernel functions
along a motion trajectory. Depending on two designed kernel
functions, we have two typical integral invariants of transformation
groups, the distance and area integral invariants. In this paper, we
favor the area integral invariants as our integral invariants in this
paper, and define them as the line integrals over a dynamic domain
of integration within instant Frenet–Serret frame along a motion
trajectory. We then derive a novel estimation formula accordingly
to approximate the proposed integral invariants for discrete trajec-
tories based on the Maximal Blurred Segment of discrete curves. In
order to match trajectories, we define a distance function of
dynamical time warping as the similarity measure between a pair
of motion trajectories able to deal with some nonlinear variations
including different sampling rates, unequal lengths, and occlusions.
Finally, we show the effectiveness, robustness of the integral
invariants in motion trajectory matching and recognition.

3. Integral invariants

A space motion trajectory is a sequence of position vectors of a
moving object in 3-dimesional Euclidean space, and we denote it
with γ: I-R3, parameterized by temporal sequence t :

γðtÞ ¼ fxðtÞ; yðtÞ; zðtÞj tA ½a; b�g; ð1Þ
where ½a; b�A I is the time interval and we assume the motion
trajectory γ in this paper is a regular curve, i.e., ‖γ'ðtÞ‖a0 at all t.
Normally, a space motion trajectory can also be parameterized with
respect to arc length s, γðsÞ ¼ fxðsÞ; yðsÞ; zðsÞg. Note that in practical
scenarios motion trajectories are often sampled discretely, and thus t
is set to ½1;N�AZ in this case, where N is the trajectory length
(frames). In numerical integration of integral invariants, this discrete
temporal parameterization is suitable for modeling the approximation
algorithm for numerical integration, whereas in the definition of
integral invariants we assume a motion trajectory is a regular curve
parameterized with respect to continuous arc length or time sequence.

In this section, we first propose a general definition of integral
invariant for a space motion trajectory and then exemplify two
specific integral invariants depending on two typical kernels,
respectively. The estimation of the area integral invariants for a
discrete trajectory is then derived based on the maximal blurred
segment of discrete curves. In practical applications, motion
trajectories commonly occur in both R2 and R3 Euclidean space.
Therefore, the proposed integral invariants can be applied to both
planar and space trajectories thanks to the property of R2 being
the subgroup of R3, where the integral invariants for planar
trajectories are just the special instances without loss of generality.

3.1. Definition of integral invariant for space trajectory

As addressed in [14,25], it can be deduced that two motion
trajectories are equivalent if and only if one can be mapped to
another one by a group transformation. Furthermore, they are
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equivalent as their invariants up to a group transformation are
identical. Hence, a group-invariant for a space motion trajectory is
defined in Definition 1.

Definition 1. Let G be a transformation group acting on R3. The
function I: R3-R is a G-invariant if it satisfies
IðγÞ ¼ IðgdγÞ; 8gAG ð2Þ

The function IðdÞ at each point of a trajectory γ returns a real
number. According to the definition, there are some familiar
examples of invariants, such as curvature and torsion (differential
invariants) in [25,33]. Curvature and torsion in 3D space are useful
features for describing space curves at trajectory matching and
recognition [32,33]. They are invariant to Euclidean group Eð3Þ and
similarity group Sð3Þ which will be considered as the transforma-
tion group G for the following definition of integral invariants.

Integral invariants proposed by Manay et al. [14] are effective
and powerful representations for planar shape matching. Extend-

ing them to represent space trajectories in R3 Euclidean space is
quite promising. To this end, we have to first define a meaningful
domain of integration over which a motion trajectory can be

integrated in R3 space. Normally, the domain of integration can
be an interval, area, or volume. Instead, we propose integral
invariants for a motion trajectory based on the line integrals at
a class of kernel functions along the motion trajectory, where the
domain of integration is a trajectory (path) instead of an interval
at a fixed axis. In addition, to preserve the locality of integral
invariants, we employ a local function to restrict integration over
the neighborhoods at each reference point. Taking into account
these aspects, a general definition is made for a space trajectory

with Definition 2. We denote transformation group acting on R3

with GAEð3Þ [ Sð3Þ; we also use the formal notation μ to indicate
either time instant t or arc length s along a trajectory.

Definition 2. A function IðpÞ is an integral G-invariant for a space
trajectory γ at point p if there exists a kernel function k: R3 �
R3-R such that the line integral of the kernel function along the
trajectory γ:

IðpÞ ¼
Z
γ
kðp; γðμÞÞdμ 8 pAγ; ð3Þ

where kðn; nÞ satisfiesZ
γ
kðp; γðμÞÞdμ¼

Z
gγ
kðgp; gdγðμÞÞdμ 8 gAG; ð4Þ

In the definition, designing of the kernel function kðp; γÞ can be
chosen freely depending on the final goal. There are two specific
integral invariants for a space trajectory, the distance and area
integral invariants depending on two designed kernel functions,
respectively, exemplified in Sections 3.2 and 3.3.

3.2. Distance integral invariant

Consider G¼ Eð3Þ and the following integral invariant, given
the kernel kðn; nÞ, computed at point pAγ:

IðpÞ ¼
Z b

a
kðp; γðtÞÞdt ¼

Z b

a
qðp; γðtÞÞdðp; γðtÞÞdt; ð5Þ

where dðp; γðtÞÞ:¼ ‖p�γðtÞ‖ is the Euclidean distance in R3, and the
weighting function qðn; nÞ can be designed freely to restrict the
computation of dðp; γðtÞÞ in neighboring points to preserve the
locality. In this paper, we let qðn; nÞ be a ball kernel defined in Eq.
(6). It is shown immediately that this is a Euclidean invariant since
the distance is preserved under Euclidean transformations, but it
needs to be further normalized to get invariance under similarity
group transformations Sð3Þ. In terms of the definition, the value of
IðpÞ is actually the average distance from the current point p to its
neighboring points restricted by a kernel function. This distance
integral invariant can be thought of as a continuous version of 3D
shape context [16]. The difference is that the shape context
signature at a reference point captures the histogram bins of the
neighboring points using a log-polar weight kernel at the point,
whereas in our case, we only retain the mean distance of the
neighboring points relative to the reference point.

As suggested in [14], the distance invariants are not discrimi-
native enough in that a unique distance invariant can correspond
to different geometric features. This ambiguity for distance invar-
iants certainly exists in 3D space, which is a motivation for us to
introduce the next integral invariants.

3.3. Area integral invariants

3.3.1. The domain of integration over space trajectory
Considering some meaningful area integral invariants for a space

trajectory, we have to first define an effective domain on the
trajectory in which a kernel function can be integrated over in
terms of Definition 2. Nevertheless, the fact of non-closed contours
and varying motion orientations of space trajectories make it
difficult to have an invariable domain of integration along motion
trajectories. Therefore, we propose a dynamic domain of integra-
tion, where the domain at each point locates on a specific projection
plane onto which a motion trajectory can be projected. In terms of
differential geometry, the Frenet–Serret frame associated with a
space curve is a typical descriptive framework to describe the
dynamic evolution of the curve in 3D Euclidean space, where at
each reference point there are three orthogonal unit vectors: the
tangent vector t, principle normal vector n, and binormal vector b.
The osculating plane, Pt

O ¼ spanðt;nÞ, at the reference point pðtÞAγ
is spanned by the tangent vector t and normal vector n, while the
other two planes, normal plane Pt

N and rectifying plane Pt
R, are

spanned in the same way as shown in Fig. 1.
Based on the Frenet–Serret frame, the Frenet–Serret formulas

are then configured using differential equations that describe the
dynamic relations among the three unit vectors [26]. In the Frenet–
Serret formulas, the most descriptive parameters for a space curve
are curvature and torsion. Intuitively, we define the domain of
integration at a reference point on the osculating and rectifying
planes at the reference point in that the instant curvature and
torsion are in principle evaluated on these two projection planes,
through which we can easily connect the area integral invariants to
traditional differential invariants at certain conditions discussed in
Section 3.3.3 later. As a result, it comes to a series of osculating and
rectifying planes, Pt

O and Pt
R, across all the points. These two planes

at each point would serve as projection planes in which a space
trajectory γ can be orthogonally projected onto, respectively, form-
ing two projected trajectories, γtO and γtR. The integration along these
two projected trajectories can be computed independently asFig. 1. Frenet–Serret frame at a reference point of a space trajectory.
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shown in Fig. 3. And for the bounding of integration, it is the
neighborhoods centered at the reference point bounded by a ball
kernel in this paper shown in Fig. 2. More generally, the ball kernel
can be substituted by a Gaussian kernel.

3.3.2. Definition of area integral invariants
A ball function, as shown in Fig. 2, is defined by Br: R3 �

R3-f0;1g to indicate whether a point ε is located on the interior of
a sphere with radius r centered at p defined by function Brðp; εÞ,

Brðp; εÞ ¼
1⋯ p�ε

�� ��rr

0⋯otherwise

(
U 8 pAγ; εAR3; ð6Þ

Consider G¼ Eð3Þ [ Sð3Þ and for any given radius r, the area
integral invariant at a reference point p on the osculating projec-
tion plane is defined as a line integral of a kernel function f O along
the projected trajectory γpO in terms of Definition 2:

IrOðpÞ ¼
Z
γpO

f Oðp; γðsÞÞds¼
Z b

a
f Oðp; γðtÞÞ‖γpOðtÞ0‖dt; ð7Þ

where ds is arc length, indicating that we are moving along a
trajectory γðsÞ parameterized by arc length. Kernel f O can be an
arbitrary continuous function, which we define here as a circle
along the projected trajectory on the osculating plane, and where
we set the radius of the circle as r equal to the ball kernel Br acted
on the trajectory, as indicated in Fig. 4. Since f O is integrated along
the projected trajectory γpO, it is actually the distance from the

projected trajectory to the circle

f Oðp; γðtÞÞ ¼ Brðp; γðtÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�fðγðtÞ�pÞdtg2

q
�ðγðtÞ�pÞdn

� �
)

IrOðpÞ ¼
Z b

a
Brðp; γðtÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�fðγðtÞ�pÞdtg2

q
�ðγðtÞ�pÞdn

� �
‖γpOðtÞ0‖dt;

ð8Þ
As ds=dt

� �¼ ‖γpOðtÞ0‖, it here stands for the arc length derivative
with respect to t in the projected trajectory γpO. We drive ‖γpOðtÞ0‖ to
be represented in terms of the expression γ0ðtÞ by transforming the
original coordinate of the motion trajectory γðtÞ to the orthonor-
mal basis of the Frenet–Serret frame at p:

ds
dt

¼ ‖γpOðtÞ0‖¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ0ðtÞdtð Þ2þ γ0ðtÞdnð Þ2

q
¼ ‖γ0ðtÞd t n 0

� 	
‖ ð9Þ

And, therefore, by Eqs. (8) and (9) we have

IrOðpÞ ¼
Z b

a
Brðp; γðtÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�fðγðtÞ�pÞdtg2

q
�ðγðtÞ�pÞdn

� �
‖γ0ðtÞ

d t n 0
� 	

‖dt ð10Þ

In the same manner, we can obtain an area integral invariant on
the rectifying plane accordingly

IrRðpÞ ¼
Z b

a
Brðp; γðtÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�fðγðtÞ�pÞdtg2

q
�ðγðtÞ�pÞdb

� �
‖γ0ðtÞ

d t 0 b
� 	

‖dt ð11Þ

Fig. 2. Ball kernel acting on a reference point of a space trajectory.

Fig. 3. Domain of integration on (a) the osculating plane and (b) the rectifying projection plane restricted by a ball kernel shown in Fig. 2. In the figure, the space trajectory is
projected onto the osculating and rectifying planes of the Frenet–Serret frame at the reference point.

Fig. 4. Definition of the kernel function for the area integral invariant at a point of
the projected trajectory on the osculating plane. In the same manner, the definition
is the same as on the rectifying plane.
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Finally, we can obtain the complete area integral invariants for a
space trajectory at point p represented by the vector

IrðpÞ ¼ fIrOðpÞ; IrRðpÞg; ð12Þ

where all variables with the lower indicator R or O in equations
denote their measure on the rectifying and osculating planes,
respectively. As shown in Fig. 3, the area integral invariants IrðpÞ
indicate the shaded areas, each of which lie in the interior of the
circle with radius r centered at p on the corresponding projection
plane as shown in Fig. 3, and their visualization along a space
trajectory is shown in Fig. 5.

In 3D space, the area integral invariants here are in principle an
extension of planar area integral invariants [14] in which all the
points on a planar trajectory lie on a consistent osculating plane with

the torsion τ¼ 0. We can observe from Eqs. (7)–(11) that the area
integral invariants are derived based on local distances and areas
within local Frenet–Serret frames, all of which are independent of
specific coordinate systems. The dot and cross products of derivatives
are purely local quantities of the trajectory features. Therefore, the
area integral invariants are Euclidean invariants. They also can admit
invariant to similarity group Sð3Þ by normalizing them

IrðtÞn ¼ IrðpðtÞÞn ¼ IrðpðtÞÞ
πnr2

ð13Þ

where the normalized area integral invariants are bounded between
0 and 1, and would be the integral invariants we favor in the
remainder of this paper.

3.3.3. Relation of local area integral invariants to curvature and
torsion

It is noticed that there are some intrinsic connections between
traditional differential invariants and the local area integral
invariants under certain conditions. Torsion and curvature, tradi-
tional differential invariants for space trajectories [25], are con-
sidered as complete invariants since they allow the recovery of the
original trajectory. Furthermore, all the differential invariants with
any order can be in principle derived from functions of curvature
and torsion in 3D space. Therefore it is an elegant way to tap into
the results of differential invariants by linking our area integral
invariants to curvature and its derivative, torsion, without con-
fronting the drawbacks of high-order derivatives.

As the planar area integral invariants in [14] are a subset of our
area integral invariants, the relation between curvature and the
local area integral invariants can be thus derived straightforwardly
in the sameway as in [14]. Local curvature measures the deviance of
a curve from being a straight line relative to the osculating plane at
each point, at one of which the curvature can be computed locally
based on the osculating circle as shown in Fig. 6(a). IrOðpÞ denotes
the interior region on the osculating plane, which is the intersection
area between a circle with radius r and the projected curve γO, and
then can be approximated by the area of the shaded sector in Fig. 6
(b), i.e., IrOðpÞ � r2θ. Now, the angle θ can be computed from the
cosine function cosine function cos θ¼ r=2R. Since the curvature is
the reciprocal of the radius of the osculating circle, i.e., κ¼ 1=R, we
have the same result as [14]

IrOðpÞ � r2 cos �1 1
2 rκðpÞ
� � ð14Þ

Now, in terms of Eq. (14), the curvature at each point can be
recovered from the area integral invariants whose approximation
will reach the real values in limit when r-0.

Torsion, only existing for describing space curves, measures the
deviance of a space curve from being the plane of the curvature
and the turnaround of the binormal vector b at each point, which

Fig. 5. Visualization of area integral invariants on both the osculating and
rectifying planes of a space trajectory. The shaded areas represent the area integral
invariants along the trajectory.

Fig. 6. Approximation of the area integral invariant on the osculating plane at a point. (a) The definition of θ. (b) Approximation of IrOðpÞ.
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thus can be locally evaluated by projecting the space curve onto
the rectifying plane. Then, the connection between the torsion at a
point p and the area integral invariants IrRðpÞ on the rectifying
plane is exactly in the same formula as the approximation of IrOðpÞ
using the curvature. We thus have the result

IrRðpÞ � r2 cos �1 1
2 rτðpÞ
� � ð15Þ

3.4. Estimation of area integral invariants

As we claimed, integral invariants we propose do not involve
high-order derivative operations. In practical applications, the dis-
tance integral invariant can be computed directly according to Eq. (5).
However, the computation of the area integral invariants involves
higher-order derivatives that cannot be computed directly for
discrete trajectories in practical applications. In this section, the
problem of how to estimate the area integral invariants is investi-
gated. In practical applications, motion trajectories are some discrete
temporal sequences sampled from the visual sensors in the presence
of noise. For a discrete noisy motion trajectory, it is difficult to
accurately estimate the projection planes along the motion trajectory,
which immediately can compromise the accuracy and robustness of
the area integral invariants even under small-scale perturbations. It is
observed from Eqs. (10) and (11) that obtaining an instant Frenet–
Serret frame at each point of a space trajectory is a key problem to
calculate the area integral invariants. Thus, we formulate an estima-
tion method of the Frenet–Serret frame based on Maximal 3D
Blurred Segment of noise curves (MBS) [28] studied thoroughly in
discrete geometry. We employ MBS to decompose a discrete noisy
trajectory into some consecutive overlapped minimally thin blurred
segments via eliminating and bypassing those noise points. Next, we
further obtain the corresponding left and right key points of the
blurred segments close to each reference point so that the triple
norm vectors ðt;n;bÞ of the Frenet–Serret frame at each reference
point can be estimated by these non-collinear triple points. The
projection planes are then formed straightforwardly based on the
estimated Frenet–Serret frame at each point.

3.4.1. Maximal 3D blurred segment of width v
The notion of blurred segment relies on the basic concept of 3D

discrete line [30]. We need to review briefly its concept defined as
follows.

Definition 3. A 3D discrete line [30], denoted by
D3Dða; b; c; μ; μ0;ω;ω0Þ, with a main vector ða; b; cÞAZ3 and aZbZ
c, is defined as a set of points ðx; y; zÞ from Z3 verifying

D
μrcx�azoμþω

μ0rbx�ayoμ0 þω0

(
ð16Þ

with μ; μ0;ω;ω0AZ, and ω and ω0 are called the arithmetical width of
D. According to Definition 3, the 3D discrete line is defined here to
construct an envelope consisting of the upper and lower bounding
lines on a segment of a discrete curve, also denoted as γ here, in
limited width ω and ω0 on the coordinate planes OXZ and OXY ,
respectively, as shown in Fig. 7 that illustrates a 2D projection
version. Let γði; jÞ be a set of successive points of a discrete curve γ
indexing from i to j. The optimal bounding lines of γði; jÞ with a
minimal width are found by the thickness estimation of the convex
hull of this set of points [29,31] on OXY and OXZ planes, respectively.

According to the definition of discrete line, a known 3D discrete
curve can be segmented into a number of 3D discrete lines with a
width v that is to control the segmentation level. Generally, a
sequence of points γði; jÞ from a 3D discrete curve γ is defined
as a 3D blurred segment of width v if there is an optimal
discrete line enveloping γ(i,j), named D3Dða; b; c; μ; μ0;ω;ω0Þ,
such that ω0 �1=maxðjaj ;� jbj ÞÞrv in the plane OXY and

ω�1=maxðjaj ; j cj Þ� �
rv in the plane OXZ, which is denoted by

BSði; j; vÞ and otherwise � BSði; j; vÞ. The algorithm for recognizing
the blurred segments of a discrete curve introduced in [28,30]
allows us to work with a total complexity of Oðn log 2 nÞ thanks to
the dynamic thickness estimation of convex hulls in the discrete
curve [31].

Furthermore, Nguyen et al. [28] and Faure et al. [29] proposed the
notion of Maximal Blurred Segment of width v (MBS). It is a 3D
Maximal Blurred Segment of width v denoted as MBSði; j; vÞ if
BSði; j; vÞ, � BSði; jþ1; vÞ and � BSði�1; j; vÞ, i.e., an MBS of a discrete
curve cannot be extend either at the right side or at the left side. Let
us then consider decomposing a discrete space curve into a sequence
of intercrossed Maximal 3D Blurred Segments (MBSs) of width v
with m length

MBSvðγÞ ¼ fMBSðB1; E1; vÞ;MBSðB2; E2; vÞ; :::;MBSðBm; Em; vÞg; ð17Þ
with B1oB2o :::oBm and E1oE2o :::oEm. Bi; Ei j iA ½1;m� here
denotes the beginning and ending positions of each Maximal Blurred
Segment of the discrete curve.

3.4.2. Estimation of projection planes
Given a sequence of MBSs of a discrete trajectory, to estimate the

Frenet–Serret frames along the discrete trajectory we first denote the
estimated key points with γðBiÞ; γðEiÞj iA ½1;m� as shown in Fig. 8.
Obviously the MBSs, a sequence of estimated intercross discrete lines
that connect the beginning and ending key points of each MBS, can
approximate the real trajectory via bypassing some points that are
not important to the trajectory shape. Inspired by this fact, let γðkÞ be
the kth point of a 3D discrete trajectory γ, and RðkÞ; LðkÞjk¼ 1…N
record a sequence of the positions of estimated right nearest key
points and left nearest key points at the reference point γðkÞ such
that LðkÞokoRðkÞ. Each triple point, fγðRðkÞÞ; γðkÞ; γðLðkÞÞjk¼ 1…Ng,
is assumed to be not collinear as shown in Fig. 9. We then
approximate the osculating circle at γðkÞ using the circumcircle of
the triangle bounded by the triple points γðRðkÞÞ; γðkÞ; γðLðkÞÞ as
shown in Fig. 9. Therefore, the center of the circumcircle, denoted
by CðkÞ, can be computed according to Heron's formula.

Then, we define the unit norm vector at the kth point of the
discrete trajectory by nk ¼ γðkÞCðkÞ

,

=jγðkÞCðkÞ
,

j. The binormal vector
bk is the unit vector that is perpendicular to the plane of the
osculating circle. Then unit tangent vector tk is obtained straight-
forwardly: tk ¼ nk4bk. Now, Frenet–Serret frames associated with
each point can be formed, and the triple projection planes are
spanned by the triple norm vectors.

3.4.3. Approximation of area integral invariants
Given a sequence of estimated projection planes for a space

discrete trajectory, we can approximate the area integral invariants
at all points of the trajectory by numerical integration. At the kth
reference point, we first project the space discrete trajectory onto
the corresponding osculating and rectifying planes, forming the
projected trajectory intersected by a circle with radius r at the kth
point on either the osculating or the rectifying plane. Furthermore,

Fig. 7. Optimal bounding line D of two successive blurred segments of a discrete
curve in the OXY plane.
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we discretize the intersected trajectory by sampling it at small-
scale grid resolution on the corresponding projection plane to
approximate the intersected area using numerical integration.

The overall algorithms for approximating the integral invariants are
described in Table 1 with Matlab pseudocodes in which the recogni-
tion of blurred segments refers to that in [28,30]. To test our numerical
approximation, we consider an analytical space trajectory γðtÞ ¼
ð cos t; sin t; tÞ which is shown in Fig. 10(a). The analytical results
of its differential invariants are given by theoretically computing

kðtÞ ¼ ‖γ'ðtÞ � γ''ðtÞ‖
‖γ'ðtÞ‖3

¼ 1
2
; τðtÞ ¼ ðγ'ðtÞ � γ''ðtÞÞUγ'''ðtÞ

‖γ'ðtÞ � γ''ðtÞ‖
¼ 1
2
U

The results show that this space trajectory moves along a fixed
orientation with constant curvatures and torsions. Considering the
relation of the area integral invariants to curvature and torsion, the
integral invariants on two projection planes are supposed to be
constants, consistent with the calculated differential invariants. We
approximate the integral invariants via the proposed estimation
formula, and compute the differential invariants by the approxima-
tion method in [27], respectively, with the discrete partition Δt ¼ 0:1.

The results of the original trajectory are shown in Fig. 10(b) with an
expected consistency with the theoretical results. Nevertheless, from
Fig. 10(c) severe disturbances can be observed in the differential
invariants when adding noise to the original trajectory.

It is worthy to note that for most of the relevant descriptors, the
computational complexity tends inevitably to be high as the dimen-
sion of shapes rises to be higher [40]. Computing the descriptions for
a trajectory in 3D space is far more complex than those in 2D space
[25,27]. To describe a trajectory or shape in 3D space, there is a major
bottleneck that is how to estimate the real kinematic properties of a
moving particle along the trajectory. In differential geometry, they
can be formulated by the Frenet–Serret frame. The descriptions for a
2D trajectory or shape lying on a consistent plane can be computed
by performing discrete convolution [14,25,38] on an image or
boundary without extra computations. In this paper, on the one
hand we use the convex hull algorithm [31] to incrementally
determine the width of blurred segments to reduce the computa-
tional cost, which makes the real-time computation of the integral
invariants possible. On the other hand, in trajectory matching and
recognition using the integral invariants, we have achieved super-
iority compared with other relevant descriptors in different situa-
tions including noise, occlusions, and group transformations, as
demonstrated in the experiments (Section 5).

3.5. Occlusion invariants

Occlusion is a common phenomenon in motion trajectories due
to some temporary failures of visual tracking and self-occlusions. A
useful property of our integral invariants is that they can be
applied to match trajectories despite occlusions, due to their
computational locality. The partial integral invariants of non-
occluded portion of a full trajectory can still be generated invar-
iantly, which makes them well-suited for trajectory matching
under occlusions. They are defined as occlusion invariants that
enable a trajectory to be represented under reasonable occlusions.
Note that heavy occlusions, however, may result in ambiguities in
trajectory matching and recognition for similar trajectories.

An example of some occluded trajectories and their occlusion
invariants are shown in Figs. 11 and 12, respectively. The invariants in
Fig. 12(b and c) of the occluded instances can be completely localized
in shape within the full invariants of the original trajectory in Fig. 12
(a), which enables the occluded trajectories to be matched and
recognized from the partial matching of their occlusion invariants.

4. Similarity measure

In this section, we define a similarity measure between a pair of
motion trajectories. A distance function between their integral
invariants is defined to measure the similarity between them to
match, cluster, and classify motion trajectories. Thanks to their
invariance, the distance inherits invariant properties that are not
affected by group transformations on the trajectories. Also, the
robustness of the integral invariants makes the distance less sensitive
to noise in practical scenarios. Moreover, we want the similarity
insensitive to non-linear variations between them including different
sampling rates, unequal lengths, and occlusions to trajectories.
Therefore, we employ the DTW (Dynamic Time Warping) algorithm
[44] to handle these variations.

Given a pair of motion trajectories, their integral invariants are
represented by IA and IB withM and N length, respectively, defined
in Eq. (12). To ultimately obtain the optimized distance, the DTW
algorithm is performed based on dynamic programming to deter-
mine an optimal time warping path that could minimize the total
distance DðM;NÞ between two integral invariants, described as

Fig. 8. Dynamic estimation of Maximal Blurred Segments for the 2D version (OXY
plane) of a space discrete trajectory, where solid dots denote the points on the real
discrete trajectory, stars denote the estimated key points on the trajectory and each
blue line connects two key points in a maximal blurred segment.

Fig. 9. Estimation of the normal and tangent vectors at a reference point of a
trajectory.

Z. Shao, Y. Li / Pattern Recognition 48 (2015) 2418–24322424



follows:

Dðm;nÞ ¼ min fDðm�1;nÞ;Dðm;n�1Þ;Dðm�1;n�1Þgþdðm;nÞ;
ð18Þ

where dðm;nÞjm¼ 1:::M; n¼ 1:::N

 �

ARM�N denotes the local
distance between samples m;n from two integral invariants,
respectively, and it is defined as

dðm;nÞ ¼ΔF ¼ΔIm;n

Sm;n
I

; ð19Þ

where each specific term is defined to be the l1 norm difference as
follows:

ΔIm;n ¼ ‖IrAðmÞn� IrBðnÞn‖1; Sm;n
I ¼ ‖fIrAðmÞn; IrBðnÞng‖1 ð20Þ

In Eq. (20), Sm;n
I is to normalize the local distance to eliminate the

effects of different kernel scales between integral invariants.
Following the above definition, the total DTW distance DðM;NÞ is
computed recursively from Dð1;1Þ to DðM;NÞ by dynamically
searching for a best alignment path using an optimized algorithm
with slope constraints [44]. Then, the matching of a pair of motion
trajectories is evaluated in terms of the total distance DðM;NÞ,
which relatively reflects the similarity between two trajectories.
An example of the results of dynamically finding an optimal path
in two matching trajectories is shown in Fig. 13.

5. Experiments

This section presents experiments that show the locality, noise
robustness, and invariance properties of the integral invariants,
resulting in an effective and robust description for motion

trajectory representation, matching, and recognition. We conduct
the following experiments on several datasets which contain a
large variety of motion types and variations:

� Trajectory matching: we first evaluate the effectiveness and
robustness of the integral invariants by matching a number of
pairs of trajectories extracted from the HDM05 [34] and Berkeley
MHAD [36] motion capture datasets. The motion capture datasets
use a skeleton model of several joints of the body to represent the
human motion dynamics, where a temporal sequence of 3D joint
positions is recorded for each joint. We simulate a series of group
transformations, noise, and occlusions on the extracted trajec-
tories to match with each other to examine the noise robustness,
invariance, and occlusions handling of the integral invariants,
when compared to other descriptors.

� Sign language recognition: as a sign can be abstracted as hand
motion trajectories, we show the effectiveness of the integral
invariants applied to sign language recognition via some
recognition benchmarks. ASL (Australian Sign Language) data-
set [50] is employed here.

For comparison, we compare experimental results via the
integral invariants (II) with other descriptor-based results includ-
ing the distance integral invariant (DII), Fourier descriptor (FD)
[23], and differential invariants (DI) [30,32] in terms of those
mentioned evaluations, where the DTW (II, DII and DI) or
Euclidean distance (FD) measures the trajectory similarity in
trajectory matching and recognition based on a k-NN (k nearest
neighbors algorithm).

Table 1
Algorithms 1–2 of approximation of area integral invariants.

Algorithm 1: Approximation of area integral invariants for a space discrete trajectory.

Input data: a space discrete trajectory γ of n points, width v of the segmentation, radius r of the circle kernel for local area integral invariants;
Result: Ir a sequence of area integral invariants with radius r;
1. Employ the Maximal 3D Blurred Segment algorithm [28] to decompose the trajectory γ into a sequence of maximal blurred segments of width v, and obtain a

sequence of the resulting segments: MBSv;
2. Build MBSv ¼ fMBSðBi ; Ei ; vÞg;
3. Ir ¼ onesðn;2Þn0;
4. m¼ lengthðMBSvÞ; E�1 ¼ �1;Bm ¼ n;
5. for i¼ 0 to m�1

for k¼ Ei�1þ1 to Ei do LðkÞ ¼ Bi;
for k¼ Bi to Biþ1�1 do RðkÞ ¼ Ei;

end
6. for k¼ 2 to n�2

call the Algorithm 2 to get the IrðkÞ at kth point by inputting
radius r, triple set½γðLðkÞÞ; γðkÞ; γðRðkÞÞ �; and the trajectory γ;

7. end

Algorithm 2: Area Integral invariants approximation at kth point
Input data: a space discrete trajectory γ of n points: n� 3 matrix, radius r of the circle kernel, the triple points ½γðLðkÞÞ; γðkÞ; γðRðkÞÞ �;
Result: IrðkÞ, the area integral invariants with radius r at kth point;
1. IrðkÞ ¼ ½0;0�; grid¼ 2nr=1000;p¼ γðkÞ;
2. Ck ¼ circumcenterðγðRðkÞÞ; γðkÞ; γðLðkÞÞÞ; n¼ Ck�γðkÞ=normðCk�γðkÞÞ; b¼ crossðγðkÞ�γðLðkÞÞ; γðRðkÞÞ�γðkÞÞ
t ¼ crossðn;bÞ; % get the triple norm vectors by cross product of vectors;
3. PRðkÞ ¼ spanðb; tÞ POðkÞ¼spanðt;nÞ;
4. D¼ �ðbUpÞ; t ¼ γ Ub'þD

b Ub' ; γO ¼ γ�t Ub;

5. D¼ �ðnUpÞ; t ¼ γ Un'þD
n Un' ; γR ¼ γ�t Un; % Projecting the trajectory onto the osculating and rectifying plane;

6. ζO ¼ Brðp; γOÞ; ζR ¼ Brðp; γRÞ; % Get the intersected trajectories ζO and ζR which are the intersection between the circle kernel centered at point γðkÞ on the projection
planes POðkÞ and PRðkÞ, and the projected curve γO and γR respectively.

7. Discretize the integral intersected trajectories ζO and ζR with g grid resolution;
8. N ¼ lengthðζOÞ; M ¼ lengthðζRÞ

9. IrO kð Þ ¼ PN
t ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2� ζOðiÞ�pÞUt� 	2q

� ζO ið Þ�p
� �

Un
� 

ng;IrR kð Þ ¼ PM
t ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2� ζR ið Þ�p

�
Ut

� 	2q
� ζR ið Þ�p
� �

Ub
� 

ng

10. IrðkÞ ¼ ½IrOðkÞ ; IrRðkÞ�;

Z. Shao, Y. Li / Pattern Recognition 48 (2015) 2418–2432 2425



5.1. Parameters setting

For approximating the integral invariants in Algorithm 1, a
trajectory is digitalized with 1000 grids. We then perform the
Maximal Blurred Segment with width v¼ 8 on all datasets. In
addition, the radius of the ball kernel at γðkÞ is determined by the
average of inter-distances between γðkÞ and its nth nearest points,
r¼ j γðkÞ�γðk�nÞj þ j γðkÞ�γðkþnÞjð Þ=2. In other words, the radius
of the ball kernel at each point depends on the distributions of the
neighboring points at each point instead of setting it empirically. In
the experiments, we set n¼ 2. In the same way, we obtain the
average distance of the nearest 5 points at γðkÞ for the distance
integral invariant.

For Fourier descriptor, the following Fourier transformation for
1D data is used to describe a motion trajectory by applying it to
each dimensional data

Xl ¼
XN
t ¼ 1

xðtÞe� j2πðt�1Þðl�1Þ=N ; 1r lrN; ð21Þ

As a result, we obtain a sequence of coefficients associated with
each dimension: Fl ¼ fXl;Yl; Zlg. The Fourier descriptor is further

normalized [23] for keeping invariant to translation, start point,
and scaling, provided that the first coefficient is ignored. The rest
of the coefficients are scaled by the second coefficient. It should be
noted that as suggested in [23] Fourier descriptor is not able to
keep complete rotation invariance that is achieved by simply
taking the magnitude of each Fourier coefficient.

5.2. Trajectory matching

For trajectory matching, the test is performed on two popular
motion capture datasets, HDM05 dataset [34] and Berkeley MHAD
dataset [36]. HDM05 dataset consists of around 100 motion classes
performed by 5 different actors. Most of these classes contain 10–50
different realizations for each motion amounting to 1457 smaller
motion clips. The duration of motion sequences ranges from 56 to
901 frames with the frequency of 120 Hz. Berkeley MHAD dataset
contains 11 motion categories performed by 12 subjects with
5 repetitions per motion using active optical motion capture system
at a 480 Hz sampling rate, yielding about 656 motion sequences
(several erroneous motions are eliminated). The motion types
contain: jump, jumping jacks, bend, punch, wave one hand, wave
two hands, clap, throw, sit down, stand up, and sit down/standup.

Fig. 10. Approximation results of integral invariants and differential invariants of an analytic trajectory and its noisy version. (a) Analytical curve γðtÞ ¼ ð cos t; sin t; tÞ for
0rtr6π and its noisy version (Gaussian white noise with standard deviation 0.01). (b) Results of the original version. (c) Results of the noisy version.
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While each motion sequence in Berkeley MHAD contains multiple
repetitions, we here collect the experimental dataset consisting of
shorter motion clips by splitting each of them into individual
sequences with one repetition using labels given by Ofli [36].

Firstly, for the test on the HDM05 dataset, we collect 16 motion
classes including deposit floor, elbow to knee, gab high, hop both leg,
jog left, jump down, jumping jack, kick forward, lie down floor, rotate
arm backward, sit down chair, sneak, squat, stand up, throw basket-
ball, and throw. Among them, 16 original motion trajectories of the
right hand are randomly extracted each time from 16 motion
classes, respectively. They are to match their transformation ver-
sions, each of which is obtained by a series of actions including first
downsampling or upsampling randomly the original trajectory to a
new one with 0–50% more or less length than the original frames,
adding Gaussian noise (normalized standard deviation δ), then
rotating 301 and 451 by x and z axes, respectively, then translating
200 mm and 500 mm along x and y directions, respectively, and
finally scaling by 0.5 factor. Examples for a group of original and
transformation versions of motion trajectories are shown in Fig. 14.
This extracting and matching procedure is run 50 times getting the
average matching accuracies as shown in Fig. 15 compared with
other descriptors. Secondly, we also carry out the same matching
test on the Berkeley MHAD dataset. In a similar manner, 11 pairs of
motion trajectories of the right hand, corresponding to the respec-
tive 11 motion classes, are randomly extracted to match with their
transformation versions, when compared to other descriptors.

The matching performance is evaluated by the matching accuracy
that is the percentage of correct matching between pairs of trajec-
tories. The average matching accuracies with the additive noise
specified by δ are obtained by running the matching test 50 times

between original trajectories and transformed trajectories extracted
from both datasets, when compared with other descriptors. Fig. 15
shows a plot of the matching accuracies on both the HDM05 and
MHAD datasets as noise increases with δ¼ ½0;0:2�. Not surprisingly,
it can be observed that the matching accuracies obtained via all the
descriptors decrease as the additive noise increases. The matching
accuracies via the differential invariants (DI) and Fourier descriptor
(FD) decrease more drastically than other descriptors as δ increases.
The matching even fails via FD without noise added as shown in
Fig. 15 due to its limited rotation invariance. Using integral invariants
(II and DII), we can obtain some large improvements in matching
performance, where the decreases of the matching accuracies are
most insignificant, insensitive than other descriptors-based matching
as noise increases. Especially for the trajectory matching on the
MHAD dataset, the matching accuracies via II and DII decrease
slightly. As shown in the first matching experiment, both the integral
invariants (II and DII) are the most insensitive to noise and group
transformations compared with other descriptors.

To quantitatively evaluate the similarity distance in the pre-
sence of additive noise, we compare the average distance matrixes
between the original and noisy transformed trajectories, extracted
from the HDM05 dataset, via the integral invariants (II) and
differential invariants (DI) in Fig. 16. The distance matrix com-
puted using II has lower distances on the diagonal as expected in
the dataset, whereas the distance matrix computed using DI
completely lacks the expected lower distances on the diagonal.
Comparing this with the DI-based distance matrix, the robustness
of the integral invariants to noise can be observed.

One of the advantages using the integral invariants is its
potential to deal with occlusions. Occlusions are simulated here

Fig. 11. Two occluded cases of (a) the original trajectory: (b) frames 14–148 occluded; and (c) frames 1–52 plus frames 360–432 occluded.

Fig. 12. The integral invariants IO and IR of the trajectories shown in Fig. 11 accordingly.
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by randomly breaking each transformed trajectory into two
separated parts without additive noise when the trajectory match-
ing is carried out. We can observe the matching results in Fig. 17 as

the ratio of occlusion in trajectories, extracted from the HDM05
and Berkeley MHAD datasets, respectively, increases from 0% to
40% compared with other descriptors. The results show that the
matching performance drops, based on both the integral invar-
iants and differential invariants (II and DI), are relatively small
thanks to their locality. The matching performance based on the
distance integral invariant (DII) turns out to be worse. This is
probably because the distance integral invariant is not sufficient to
represent a trajectory especially under occlusions due to its non-
uniqueness as suggested in Section 3.2. Not surprisingly, the
matching accuracies via the Fourier descriptor (FD) decrease
drastically as the ratio of simulated occlusions increases, especially
on the HDM05, since its computation depends on the whole
information of motion trajectories. It should be noted that to test
how the matching performance is influenced only by occlusions
using FD, the transformed trajectories here are only translated
without rotation in this test. In summary, in occlusion handling,
II is proved to be the best in matching occluded trajectories.

5.3. Sign language recognition

In motion recognition, we examine the effectiveness of the
integral invariants in classifying motion labels on the Austral Sign
Language (ASL) dataset. The ASL dataset consists of 2565 samples of
Auslan signs, where 27 examples of each of 95 sign classes are
captured from a native signer with high-quality data and each sample
of Auslan signs is performed by moving the right hand and left hand
simultaneously in 3D space. In this test, we only employ the root
trajectory [20], the average of the right- and left-hand trajectories, to
represent a sign. There is an instance of the sign word “make” as
shown in Fig. 18. For test, we used the 1-NN classifier based on the

Fig. 14. Examples for a group of extracted 16 motion trajectories of the right hand from HDM05 motion dataset with two versions, (a) original versions, and
(b) transformation versions without simulated occlusions.

Fig. 13. Optimal path through a distance matrix. The optimal path is found by
dynamically wrapping the time axis between integral invariants (vector features) of
a pair of motion trajectories. The gray level indicates the similarity between two
trajectories; darker shade indicates higher similarity.
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DTW inter-descriptor distance as defined in Eq. (18). Each time 16
classes of samples are randomly selected in the ASL dataset to run the
recognition test where half the samples of each class are for training
and the other half are for testing. We repeated this test 50 times. In
the same way, the other descriptor-based recognitions are also
carried out to compare with our integral invariants.

The average recognition results are summarized in Table 2. The
best recognition accuracy with 94.17% is obtained using the
integral invariants (II) and the accuracy reduces to 93.85% when
using the differential invariants (DI). Without additive noise, the
recognition results show a consistency with the matching results
in Section 5.2. The result based on the Fourier descriptor (FD) is
much worse compared with DI and II. Compared with hand
motions in matching experiment, sign languages are more com-
plicated so that the lack of uniqueness of representation makes the

distance integral invariant (DII) ambiguous with the worst result
in sign recognition.

6. Conclusion

In this paper, we propose a class of new integral invariants as an
effective and robust description for motion trajectories to achieve
effective and robust motion trajectory matching and recognition.
Compared with differential invariants, the integral invariants invol-
ving integration along a motion trajectory have a smoothing effect
and, therefore, are less sensitive to noise without preprocessing the
motion trajectory. Also, regarding the estimation of the integral
invariants, we can control both the scale of a kernel function and
the width of blurred segments to achieve stability and robustness in

Fig. 15. Average matching accuracy as the additive noise in trajectories increases. (a) Average matching accuracy on the HDM05 dataset, and (b) on the Berkeley MHAD
dataset. While the matching accuracies based on other descriptors strongly decrease as noise increases, the matching accuracies based on the integral invariants and the
distance integral invariants are much more insensitive to noise.

Fig. 16. Distance matrixes between noisy transformed trajectories with δ¼ 0:08 (across bottom) and original trajectories (across left side) via (a) the integral invariants, and
(b) differential invariants. Lighter shades indicate smaller distances.
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the presence of noise. The computational locality of the integral
invariants allows trajectory matching under occlusions, while some
of the previous descriptors, such as the Fourier descriptor and
moment invariants, are global descriptors where local changes can
result in variations everywhere. Moreover, the invariance under
Euclidean and similarity group transformations makes the integral
invariants independent of observing viewpoints and viewing dis-
tances. On the experimental level, we show the claimed properties
of the integral invariants including invariance, robustness to noise,
and insensitivity to occlusions in trajectory matching and recogni-
tion compared with other descriptors.

Multiscale space methods [15,39] allow us to analyze motion
features at multiple resolutions in a coarse-to-fine manner. Extend-
ing our integral invariants to multiscale representation is possible
for tapping into different levels of motion features as we vary the
scale of a kernel function in Definition 2, such as the radius of a ball
kernel in this paper, which is our ongoing work now.

While the integral invariants are designed to describe space
motion trajectories, they can also benefit invariant representation

in computer vision such as representing 3D contour shapes for
object recognition and retrieval. Normally, both the Euclidean
invariants and affine invariants are necessary for 2D shapes to
address shape variations under Euclidean and affine transforma-
tions, for instance those shapes, captured from different view-
points, are equivalent classes of each other. Nevertheless, in 3D
space we argue that Euclidean invariants are sufficient to repre-
sent 3D shapes and trajectories in that the 3D information, tracked
from stereo vision or other motion capture systems, would not
generate affine transformations on them.

In practical applications, complex motions often involve
multiple motion trajectories tracked from concurrent moving
objects, such as articulated motions of the human body. As
human motions can be represented in the form of 3D positions
of joints in space over time, such joint trajectories can serve as
effective features in motion retrieval [49] to accurately search
similar motions from a large repository in games and animations.
As addressed in our previous work [20], a group of multiple
motion trajectories can be decomposed into a root trajectory and

Fig. 17. Average matching accuracy as the ratio of occlusion increases. (a) Experimental results on the HDM05 dataset, and (b) experimental results on the Berkeley MHAD
dataset. While the matching accuracies based on the Fourier descriptor and distance integral invariant strongly descrease as the ratio of occlusions increases, the matching
accuracies based on the integral invariants and differential invariants are much more insensitive to occlusions.

Fig. 18. Sign samples of the word “make” from the ASL dataset: (a) the right- and left-hand trajectories and (b) the root trajectory that is the average of the right- and left-
hand trajectories.
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child trajectories. While the root trajectory represents the most
discriminant one in multiple motion trajectories, the relative
distributions of child trajectories with respect to the root trajec-
tory are also a key clue to characterize motion contents. In this
case, we can integrate both the integral invariants of the root
trajectory and the relative distributions into one group to
compose a hierarchical descriptor for multiple trajectories. The
hierarchical descriptor is thus able to capture both the spatio-
temporal distributions and key dynamic clues of multiple trajec-
tories jointly thanks to the hierarchal structure [20]. Hence, the
hierarchical descriptor for multiple trajectories can be used to
retrieve human motion sequences. With our ongoing work, we
are exploring the possibilities and potential of the hierarchical
descriptor in motion retrieval.

A recognition system relies on two key factors, input features and
recognition engines. While we have shown that the integral invar-
iants are an effective representation for motion trajectories to be
used in sign recognition, there is still room for improvement in the
recognition efficiency for large-scale trajectories. Some learning-
based algorithms, such as SVM and HMM, will be employed to boost
the recognition efficiency by training these models using the integral
invariants, which is our future work.
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