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Abstract. Robust morphogen gradient formation is important for embryo de-
velopment. Patterns of developmental tissue are encoded by the morphogen

gradient that drives the process of cell differentiation in response to different
morphogen levels. Experiments have shown that tissue patterning is robust

with respect to morphogen overexpression. However, the mechanisms for this

robust patterning remain unclear. The expansion-repression mechanism, which
was proposed for achieving scaling of patterning with organ size, is a type of

self-enhanced clearance through a non-local feedback regulation and may con-

tribute to the robustness with respect to morphogen overexpression. In this
paper, we study the role of the expansion-repression mechanism in morphogen

gradient robustness through a two-equation model with general forms of feed-

back functions. We prove the existence of steady-state solutions, and, through
model reduction and simplification, show that the expansion-repression mech-

anism is able to improve the robustness against changes in the morphogen

production rate. However, this improvement is restricted by the biological
requirement of multi-fate long-range morphogen gradient.

1. Introduction. Embryonic patterning of a developing organism is typically gov-
erned by signaling molecules known as morphogens. Morphogens diffuse away from
a local production site and bind with membrane receptors to form a morphogen
gradient in a patterning region. Patterns of developmental tissue are encoded by
the morphogen gradient that drives the process of cell differentiation in response
to different morphogen levels [26, 27]. The Drosophila melanogaster wing imaginal
disc is a popular model system for studying morphogen-mediated patterning. In
this model system, several morphogens are involved: Decapentaplegic (Dpp) which
functions for the anterior-posterior patterning [1, 16, 25], Wingless (Wg) which con-
trols the dorsal-ventral patterning [7, 28], and Hedgehog (Hh) which regulates the
central part of the disc [24].

Many mathematical models have been proposed to study the formation of mor-
phogen gradients. In [12, 13, 17, 18, 19], different models were proposed, and
the existence, uniqueness and local stability of steady-state solutions were stud-
ied. These theoretical studies have shown how morphogen gradients depend on
biological parameters and provided a stepping stone for studying morphogen gra-
dient robustness. In [20], experiments have shown that Dpp overexpression induces
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no detectable effect on the anterior-posterior patterning of the Drosophila wing
disc. Different strategies have been proposed to explain such robustness, including
self-enhanced clearance (SEC) [8], multi-gradient system [11] and pre-steady-state
decoding [5]. With SEC, morphogen signaling upregulates morphogen receptor
synthesis so that the degradation of morphogens by binding to their receptors is
enhanced by their own signaling. Through this strategy, the robustness is improved
by reducing the sensitivity to morphogen synthesis and suspending overexpressed
morphogens in the signaling region.

Aside from the robustness, scaling of patterning with organ size is another impor-
tant topic in morphogen studies. Ben-Zvi and Barkai [2, 4] predicted that scaling
may be achieved through the expansion-repression mechanism. They showed that
a newly identified component, Pentagone (Pent), which is repressed by Dpp signal-
ing and expands Dpp gradient, acts as an expander in expansion-repression motif
[3, 10]. In [2], a generic two-equation model of the expansion-repression mechanism
in which morphogen signaling upregulates morphogen degradation through diffu-
sive expanders was introduced. This mechanism can be considered as a type of
SEC through a non-local feedback regulation. This point of view motivates a study
on how the expansion-repression mechanism contributes to the robustness of mor-
phogen patterning. In this paper, we consider a two-equation model of a morphogen-
expander system with general forms of feedback functions. Through quantifying the
effect of morphogen overexpression, we demonstrate how the expansion-repression
mechanism improves the robustness of morphogen system.

This paper is organized as follows. In Section 2, we introduce a two-equation
model of morphogen-expander system with general forms of feedback functions. In
Section 3, we prove the existence of steady-state solutions. In Section 4, we perform
model reduction with the assumption that expanders diffuse rapidly and degrade
slowly [3, 4]. In Section 5, we define a robustness measure for quantifying the
effect of morphogen overexpression and, through this measure, we show how the
expansion-repression mechanism improves the robustness of a steady-state solution
against changes in the morphogen production rate and the limitation of this im-
provement is also discussed in this section. Finally, discussion is given in Section
6.

2. Mathematical Model. We consider a morphogen model in which morphogens,
denoted by M , are produced in a local region and diffuse out to a patterning
region. The gradient formed by morphogens governs the patterning of a tissue
through establishing the boundaries between cell fates at particular thresholds of
morphogen concentration. One such example is the anterior-posterior patterning of
the Drosophila wing disc driven by Dpp [25].

In the model, diffusive molecule expanders, denoted by E, are produced ev-
erywhere while the production rate is downregulated by morphogen level. Also
expanders reduce the degradation rate of morphogens to extend the signaling dis-
tance. Figure 1 shows the schematic diagram of the morphogen-expander system
which was proposed in [2].

The dynamics of the concentrations of M and E are modeled as follows:

∂[M ]

∂t
= DM∆[M ]− βM ([E])[M ] + VM (x) (1)

∂[E]

∂t
= DE∆[E]− βE [E] + VE([M ]), (2)
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Figure 1. Schematic diagram of the morphogen-expander system
which was proposed in [2].

where βM ([E]) and VE([M ]) are positive functions which are strictly decreasing with
respect to [E] and [M ], respectively. In this paper, for simplification, we assume
that βM and VE are smooth functions.

As in [15, 18, 19], we simplify the problem by representing the patterned tissue as
an one-dimensional domain, as shown in Figure 1. The midpoint of the morphogen
production region is denoted by x = −xp; the boundary between the production
region and the patterning region is x = 0; and the edge of the patterning region is
x = xmax. According to these settings, we define

VM (x) =

{
vM if x ∈ (−xp, 0);

0 if x ∈ [0, xmax),
(3)

where vM is the morphogen production rate in the production region. We assume
that morphogen and expander gradients are symmetric with respect to the center
x = −xp and the boundary condition at x = xmax is reflective [3, 4]. Accordingly
we define the boundary conditions as follows:

∂[M ]

∂x
(t,−xp) = 0,

∂[M ]

∂x
(t, xmax) = 0; (4)

∂[E]

∂x
(t,−xp) = 0,

∂[E]

∂x
(t, xmax) = 0. (5)

3. Existence of Steady-State Solution. The formation of morphogen gradients
typically requires only a few hours, which is relatively short compared with the
time scale of cell growth, hence, we are only interested in steady-state morphogen
gradients in this study. In this section, we consider the steady-state equations for the
model (1)-(2). Let a and b be the steady-state solutions of [M ] and [E], respectively.
By setting the left hand side of (1)-(2) to be zero, we obtain a steady-state system:

0 = DM
d2a

dx2
− βM (b)a+ VM (x), (6)

0 = DE
d2b

dx2
− βEb+ VE(a), (7)
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with

da

dx
(−xp) = 0,

da

dx
(xmax) = 0; (8)

db

dx
(−xp) = 0,

db

dx
(xmax) = 0. (9)

Theorem 3.1. There exists a non-negative steady-state solution (a, b) for (6)-(9).

Before proving Theorem 3.1, we state the following lemma which will be used in
the proof of Theorem 3.1:

Lemma 3.2. For any continuous non-negative functions ā and b̄ such that

0 ≤ sup
−xp≤x≤xmax

ā ≤ vM
βM (VE(0)/βE)

, (10)

0 ≤ sup
−xp≤x≤xmax

b̄ ≤ VE(0)

βE
, (11)

there is a unique pair of continuous non-negative functions (a, b) satisfying

0 = DM
d2a

dx2
− βM (0)a+ (βM (0)− βM (b̄))ā+ VM (x), (12)

0 = DE
d2b

dx2
− βEb+ VE(ā), (13)

with

da

dx
(−xp) = 0,

da

dx
(xmax) = 0; (14)

db

dx
(−xp) = 0,

db

dx
(xmax) = 0. (15)

Moreover, the functions a and b satisfy

0 ≤ sup
−xp≤x≤xmax

a ≤ vM
βM (VE(0)/βE)

,

0 ≤ sup
−xp≤x≤xmax

b ≤ VE(0)

βE
.

The proof is based on the monotone method by Sattinger established in [23],
which was widely used in studying other morphogen systems [14, 15, 12, 18, 19].

Proof. Using the assumption (10)-(11) and the definitions of VE and βM , we have

0 ≤ (βM (0)− βM (b̄))ā+ VM (x) ≤ (βM (0)− βM (VE(0)/βE))
vM

βM (VE(0)/βE)
+ vM ,

≤ vMβM (0)

βM (VE(0)/βE)
,

and

0 ≤ VE(ā) ≤ VE(0).

It is easy to verify that al = 0 is a lower solution and au = vM
βM (VE(0)/βE) is an upper

solution for (12) with the boundary condition (14); bl = 0 is a lower solution and

bu = VE(0)
βE

is an upper solution for (13) with the boundary condition (15). The
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monotone method by Sattinger established in [23] shows that there are solutions a
and b of (12)-(15) satisfying

0 = al ≤ a(x) ≤ au =
vM

βM (VE(0)/βE)
,

0 = bl ≤ b(x) ≤ bu =
VE(0)

βE
.

To prove the uniqueness, it is as same as proving the uniqueness of the solution
c of the following equation:

0 = D
d2c

dx2
− βc+ f(x), (16)

with no-flux boundaries, and the constants β and D are positive constants.
We suppose that c1(x) and c2(x) satisfy (16) and set c3(x) = c1(x)−c2(x), which

satisfies

0 = D
d2c3
dx2

− βc3,

then we have

0 = D

∫ xmax

−xp

d2c3
dx2

c3dx−
∫ xmax

−xp
βc23dx.

Using integration by parts and the continuity of the solutions, we obtain

0 = −D
∫ xmax

−xp

(
dc3
dx

)2

dx−
∫ xmax

−xp
βc23dx,

therefore it implies that c3 is a zero function and c1 = c2.

Now we start the proof of Theorem 3.1.

Proof. (Theorem 3.1) First we set Ω, a subspace of the Banach space [C[−xp, xmax]]2,
with the L∞ norm and define

Ω = {(a, b) ∈ [C[−xp, xmax]]2| 0 ≤ sup
−xp≤x≤xmax

|a| ≤ vM
βM (VE(0)/βE)

and 0 ≤ sup
−xp≤x≤xmax

|b| ≤ VE(0)

βE
},

which is a closed and convex set in the Banach space [C[−xp, xmax]]2.
From Lemma 3.2, we define an operator T : Ω→ Ω such that

T (ā, b̄) = (a, b),

with (ā, b̄) and (a, b) as in Lemma 3.2.
By the standard regularity theory, we see that T is a continuous mapping. If

T (Ω) is a relatively compact subset of [C[−xp, xmax]]2, we can apply the Schauder
fixed point theorem [9] to prove that there exists a pair (a, b) such that

T (a, b) = (a, b)

and the proof of Theorem 3.1 is completed.
Now let us complete the proof by showing that T (Ω) is a relatively compact

subset of [C[−xp, xmax]]2. Using the Arzela-Ascoli theorem [22], T (Ω) is a rela-
tively compact subset if and only if the elements in T (Ω) are uniformly bounded
and equicontinuous on [−xp, xmax]. By Lemma 3.2, we see that the elements are
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uniformly bounded by Max
{

vM
βM (VE(0)/βE) ,

VE(0)
βE

}
. According to the definition of

T and the Schauder estimate of elliptic equation [9], it is easy to show that T (Ω)
is a bounded subset of [C1[−xp, xmax]]2 so we prove that the elements in T (Ω)
are equicontinuous on [−xp, xmax]. Overall, we have finished the proof of Theorem
3.1.

4. Model Reduction. To reveal the features of the expansion-repression mecha-
nism, we simplified the system (6)-(9) with the assumption that expanders diffuse
rapidly and degrade slowly [3, 4]. Under this assumption, we can approximate that
the concentration of the steady-state expander is uniform across the domain, and
thus, after replacing (a, b) by (as, bs), the system (6)-(9) becomes

0 = DM
d2as
dx2

− βM (bs)as + VM (x) (17)

with

bs =
1

βE

∫ xmax
−xp VE(as(y))dy

xmax + xp
, (18)

and the boundary conditions

das
dx

(−xp) = 0 and
das
dx

(xmax) = 0. (19)

In this simplified system, the effective degradation rate of morphogen, βM (bs),
increases with the morphogen concentration as, and thus the expansion-repression
mechanism can be considered as a type of self-enhanced clearance through a non-
local feedback regulation. In the next section, a numerical simulation shows that
this simplification gives a good approximation for the steady-state solutions of the
original system (6)-(9).

Theorem 4.1. There exists a unique non-negative solution for (17)-(19).

Proof. First we define a function θ(x; k, v) which is the unique positive solution of
the equation:

0 = DM
∂2θ

∂x2
− kθ + V (x) for x ∈ (−xp, xmax) (20)

where

V (x) =

{
v if x ∈ (−xp, 0);

0 if x ∈ [0, xmax),
(21)

and the boundary conditions

∂θ

∂x
(−xp) = 0 and

∂θ

∂x
(xmax) = 0. (22)

Define a function f(k) as

f(k) = k − βM

(
1

βE

∫ xmax
−xp VE(θ(y; k, v))dy

xmax + xp

)
for k > 0.

It is easy to prove that f(k1) = 0 if and only if as(x) = θ(x; k1, vm) is a solution of
(17)-(19).

From (20)-(22), we obtain θ(x; k, v) in terms of v, k and DM as:

θ(x; k, v) =


v
k

(
1 − e2xmax/λ−1

2(e2(xmax+xp)/λ−1)
(e−x/λ + e(x+2xp)/λ)

)
for − xp ≤ x < 0

v
k

e2xp/λ−1

2(e2(xmax+xp)/λ−1)
(e(−x+2xmax)/λ + ex/λ) for 0 ≤ x ≤ xmax

(23)
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where λ =
√
DM/k. It is easy to see that θ(x; k, v) decreases with respect to k.

Furthermore, since VE and βM are strictly decreasing functions, the function f(k)
is continuous and strictly increases with respect to k. Moreover, since f(0) < 0
and f(2βM (0)) > 0, there exists a unique positive k1 so that f(k1) = 0, and thus
as(x) = θ(x; k1, vm) is a unique positive solution of (17)-(19).

5. Robustness to Morphogen Synthesis. In this section, we consider the ro-
bustness of a steady-state morphogen gradient with respect to changes in the mor-
phogen production rate. In order to achieve this, we define the robustness R(a) as
an average of the relative change of a when the parameter vM is increased to v̄M
[17, 19]:

R(a) =
1

∆vM/vM

1

xmax

∫ xmax

0

|∆a(x)|
a(x)

dx

with

∆a(x) = ā(x)− a(x) and ∆vM = v̄M − vM > 0,

where a(x) and ā(x) are the steady-state morphogen gradients for morphogen pro-
duction rates vM and v̄M , respectively. As in [17, 19], smaller value of R(a) means
better robustness.

In this section, we first consider the simplified system (17)-(19). For this sim-
plified system, we approximate R(as) for sufficiently small change of morphogen
production (∆vM � 1) and then analyze how the expansion-repression mechanism
improves the robustness of morphogen gradient. Next, we apply numerical simula-
tions to verify the results for the following two cases with larger value of vM : the
simplified system (17)-(19) and the two-equation system (6)-(9).

5.1. Approximation for sufficiently small ∆vM . Define the sensitivity coeffi-
cient of as to vM [21],

S(x) =
vM

as(x; vM )

∂as(x; vM )

∂vM
, (24)

then, when ∆vM � 1, the robustness can be approximated by the average of the
sensitivity coefficient over [0, xmax]:

R(as) ≈
1

xmax

∫ xmax

0

|S(x)|dx. (25)

In the following theorem, we approximate R(as) in terms of the parameters in
(17)-(19) and the functions βM and VE .

Theorem 5.1. For ∆vM � 1, the robustness R(as) for the simplified system (17)-
(19) can be approximated as (25) with

S(x) = 1 +
θ1(x;βM , vM )

a(x; vM )

β′M
βE(xmax+xp)

∫ xmax
−xp V ′Ea(y; vM )dy

1− β′M
βE(xmax+xp)

∫ xmax
−xp V ′Eθ1(y;βM , vM )dy

,

where θ is defined in (23) and θ1 = ∂θ(x;y1,y2)
∂y1

, and β′M and V ′E are the derivatives

of βM and VE at bs = 1
βE

∫ xmax
−xp

VE(a(y;vM ))dy

xmax+xp
and as = as(y; vM ), respectively.
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Proof. First, we define

β̄M (vM ) = βM

(
1

βE

∫ xmax
−xp VE(as(y; vM ))dy

xmax + xp

)
, (26)

and therefore we obtain

as(x; vm) = θ(x; β̄M (vM ), vM )

where θ is defined in (20)-(22). Moreover, the derivative of as with respect to vM
is given by

∂as(x; vM )

∂vM
= θ2 + θ1

dβ̄M
dvM

, (27)

where θi = ∂θ(x;y1,y2)
∂yi

for i = 1, 2. From (26) and (27), we have

dβ̄M
dvM

=
β′M

βE(xmax+xp)

(∫ xmax
−xp V ′Eθ2(y;βM , vM )dy

+dβ̄M
dvM

∫ xmax
−xp V ′Eθ1(y;βM , vM )dy

)
and thus

dβ̄M
dvM

=

β′M
βE(xmax+xp)

∫ xmax
−xp V ′Eθ2(y;βM , vM )dy

1− β′M
βE(xmax+xp)

∫ xmax
−xp V ′Eθ1(y;βM , vM )dy

. (28)

From the definition of the function θ, it is easy to verify that

θ2(y;βM , vM ) = as(y; vM )/vM ,

then combining with (24), (27) and (28), we finally obtain

S(x) = 1 +
θ1(x;βM , vM )

as(x; vM )

β′M
βE(xmax+xp)

∫ xmax
−xp V ′Eas(y; vM )dy

1− β′M
βE(xmax+xp)

∫ xmax
−xp V ′Eθ1(y;βM , vM )dy

.

From Theorem 5.1, we write the approximated R(as) as

R(as) ≈
1

xmax

∫ xmax

0

∣∣∣∣1 +
θ1(x;βM , vM )

as(x; vM )
C

∣∣∣∣ dx, (29)

where C is a positive constant depending on all the parameters and the functions
VE and βM .

A value λ =
√
DM/βM (bs), known as the length scale [13], captures the dis-

tance that morphogens are able to reach before they are degraded by certain ra-
tio. In terms of λ, xp, xmax, vM and βM , the steady-state solution as(x; vM )
can be expressed as θ(x;βM , vM ) defined in (23). Moreover, the partial derivative

θ1(x;βM , vM ) = ∂θ(x;βM ,vM )
∂βM

for x > 0 can be expressed as

as(x; vM )
λ̂

D̂M

(
−λ̂+

x̂pe
2x̂p/λ̂

(e2x̂p/λ̂ − 1)
− (1 + x̂p)e

2(1+x̂p)/λ̂

(e2(1+x̂p)/λ̂ − 1)
+

(−x̂+ 2)e(−x̂+2)/λ̂ + x̂ex̂/λ̂

2(e(−x̂+2)/λ̂ + ex̂/λ̂)

)
where D̂M = DM/x

2
max, x̂p = xp/xmax, λ̂ = λ/xmax and x̂ = x/xmax. So if we

fix the values of D̂M and x̂p, the approximated R(as) in (29) is only determined by

the values of λ̂ and C.
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In Figure 2, we set DM/x
2
max = 10−4sec−1 and xp = 0.1, as in [3, 13], and plot

the approximated R(as) in (29) as a function of C with different values of λ/xmax
in a biologically possible range [0.1, 0.3], suggested by [13].
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Figure 2. The approximated R(as) defined in (29). (a) The
approximated R(as) as a function of C with different values of
λ/xmax. (b) The minimum of the approximated R(as) with differ-
ent values of λ/xmax.

Figure 2(a) demonstrates how the approximated R(as) depends on C. When VE
and βM are constants (without the expansion-repression mechanism), the constant
C equals to zero, and hence R(as) = 1. In the case with the expansion-repression
mechanism so that VE and βM are decreasing functions, we have C > 0. Since
θ1(x;βM , vM ) is negative (θ(x; k, v) decreases with respect to k), Figure 2(a) shows
that R(as) decreases with respect to C when C is small. This fact suggests that
the expansion-repression mechanism can improve the robustness.

Figure 2(b) shows that the minimum of the approximated R(as) decreases with
respect to λ/xmax. But we know that there is a lower bound of the relative length
scale λ/xmax for achieving multi-fate long-range morphogen gradient [13], for ex-
ample, the length scale is around 20µm for the Dpp gradient of the Drosophila
wing disc with xp = 10µm and xmax = 100µm [6]. Overall, the results in Fig-
ure 2 suggest that although the expansion-repression mechanism can improve the
robustness against changes of the morphogen production rate, the restriction on
achieving multi-fate long-range morphogen gradient induces the limitation that the
robustness R(as) is always larger than 0.2 which was adopted for an upper bound
for an acceptable robustness value [18, 19].

5.2. Numerical simulations. In the previous subsection, we showed that, for the
simplified system (17)-(19) with a sufficiently small vM , the approximated R(as)
has been improved but this effect of improvement is restricted by the biological
requirement of multi-fate long-range morphogen gradient.

Here we first verify this result for the simplified system (17)-(19) with relatively
large ∆vM = vM/2 corresponding to 50% change of the morphogen production
rate. We consider the sensitivity coefficient and the robustness with fixed λ =
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DM/βM (b) = 20µm and define

VE(z) =
vE

1 + (z/Ka)4
and βM (z) =

βmax
1 + (z/Kb)n

. (30)

which were used in [3]. The parameters vE and βmax are the maximum values of VE
and βE , respectively; the parameters Ka and Kb are the half-saturation constants
of the feedback functions.

As in [3, 13], we set vM = 8 × 10−2µM , vE = 10−3µM , βE = 10−4, xp =
10µm, xmax = 100µm, Ka = 0.2a(−xp) = 2.5183µM , Kb = b = 6.5472µM ,

DM = 1µm2sec−1 and βmax = 2/202sec−1 so that λ =
√
DM/βM (b) = 20µm. The

morphogen and expander gradients for these settings are shown in Figure 3(c). In
Figures 3(a,b,d,e), the sensitivity coefficient and R(as) are plotted with different n
varied from 0 to 8. We note that n is the Hill function coefficient in (30), which
describes the cooperativity of the feedback response, and in our case, larger n
implies larger value of β′M at the steady-state solution. For n = 0 (the case without
feedback), βM is a constant function and the robustness is equal to one. The term
β′M increases along with n and thus the robustness decreases from 1 to around 0.24
(see Figures 3(b,e)).

Now we consider the original system (6)-(9) with ∆vM = vM/2. We set DE =
10DM = 10µm2sec−1, as in [3], and other parameters are set the same as which
we used above. Figure 3(f) displays the steady-state solutions for the two-equation
system (6)-(9), which are consistent with the steady-state solutions for the simplified
system (17)-(19), shown in Figure 3(c). Also, Figures 3(b,e,h) support that R(as)
gives a good approximation for R(a) and the robustness has a lower bound which
is larger than 0.2.

6. Discussion. In this paper, we have proved the existence of steady-state solu-
tions of the two-equation morphogen-expander system (6)-(9) with general forms
of feedback functions. With the assumption that expanders diffuse rapidly and de-
grade slowly, a model reduction was used to simplify the two-equation system into
the one-equation non-local system (17)-(19). For the simplified model, we showed
that the expansion-repression mechanism improves the robustness with respect to
changes in the morphogen production rate and discussed the limitation of this im-
provement. Our analytic and numerical results supported that R(a), the robustness
measure used in [17, 19], is always larger than 0.2 which is a upper bound for an
acceptable robust system.

Although a limitation exists for the expansion-repression mechanism, a potential
modification can be proposed according to some recent experimental and mathemat-
ical results. Experiments presented in [3] support that Pent, as a expander, expands
the Dpp gradient through an interaction with Dally, a heparin sulfate proteoglycan,
which acts as a non-signaling receptor in the morphogen system. Mathematical
studies suggest that the presence of non-signaling receptors allows the morphogen
gradient to have better robustness against changes of the morphogen production
rate [18, 19]. Non-signaling receptors, coupled with expanders (as depicted in Fig-
ure 4), may provide a solution to the problem of achieving better robustness while
remaining biologically feasible, and our studies give an insight for this future study.
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