
Vol.:(0123456789)

Communications on Applied Mathematics and Computation
https://doi.org/10.1007/s42967-022-00240-y

1 3

REVIEW ARTICLE

Mathematical Modeling of Cell Polarity Establishment 
of Budding Yeast

Yue Liu1 · Jun Xie1 · Hay‑Oak Park2 · Wing‑Cheong Lo1 

Received: 20 July 2022 / Revised: 30 October 2022 / Accepted: 25 November 2022 
© Shanghai University 2023

Abstract
The budding yeast Saccharomyces cerevisiae is a powerful model system for studying the 
cell polarity establishment. The cell polarization process is regulated by signaling mol‑
ecules, which are initially distributed in the cytoplasm and then recruited to a proper 
location on the cell membrane in response to spatial cues or spontaneously. Polarization 
of these signaling molecules involves complex regulation, so the mathematical mod‑
els become a useful tool to investigate the mechanism behind the process. In this review, 
we discuss how mathematical modeling has shed light on different regulations in the cell 
polarization. We also propose future applications for the mathematical modeling of cell 
polarization and morphogenesis.
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1 Introduction

Cell polarity underlies various cellular functions for ensuing directed growth, locomotion, 
and differentiation [6]. The collapse in polarization may lead to the dysfunctionality of the 
cells [14, 66]. How cell polarity functions robust has been a central question in cell biol‑
ogy. Cell polarity development typically involves the localization of signaling molecules 
to a proper location of the cell membrane [56]. However, the fundamental mechanisms for 
this process remain controversial. It is known that the signaling molecules are initially dis‑
tributed in the cytoplasm. Then, in response to extracellular or intracellular cues or spon‑
taneously, they are localized at a proper location on the cell membrane. The localization of 
signaling molecules causes activations of certain cellular pathways which finally leads to 
the organization of the cytoskeleton and cell morphogenesis [4, 63].
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The budding yeast Saccharomyces cerevisiae is proved to be a powerful model system 
for studying the mechanism of the cell polarity establishment [4, 63]. In a yeast cell, the 
budding process is fundamentally regulated by the signaling protein Cdc42, which consists 
of guanosine triphosphate (GTP) and guanosine diphosphate (GDP) bound forms (Fig. 1). 
When intracellular or extracellular cues stimulate a yeast cell, Cdc42 will be recruited from 
the cytoplasm to the membrane [1, 35]. The exchange of signaling molecules, feedback 
regulation by molecular interactions, molecular transportation, and diffusion are involved 
in such a recruitment process [2, 26]. Cdc42, first discovered in budding yeast, is a highly 
conserved small GTPase of the Rho family and functions in multiple aspects of tissue mor‑
phogenesis and development [1, 17, 35]. Cdc42 acts as a central regulator of the polarity 
establishment, leading to distinct asymmetric cell shapes as seen in a neuron, epithelial 
cell, and filamentous fungus. Those processes are critical for the specialized functions and 
physiology of the cells and organisms. In Drosophila, small GTPases Cdc42 are necessary 
for controlling the decapentaplegic (Dpp) expression during the migratory process of the 
dorsal closure [24, 27, 52]. In Xenopus, Cdc42 plays a role in the regulation of convergent 
extension movements during the gastrulation [10]. In the gastrulation of the zebrafish mes‑
oderm, Cdc42 GTPase in the cytosol was activated and the exchange of GTP was cycled 
to initiate and guide mesodermal cell migration [31]. In sea urchin, Cdc42 activity was 
required for proper primary mesenchyme cell migration and patterning as well as the elon‑
gation of the archenteron [60].

Besides Cdc42, five distinct Rho GTPases, Rho1–Rho5, were found in S. cerevisiae. A 
notable feature of the majority of Rho GTPases is that these proteins can reversibly switch 
between an active, GTP‑bound state and an inactive, GDP‑bound state, so these proteins 
are viewed as molecular on/off switches regulated spatially and temporally during cell 
development [15, 28]. The GTP‑ or GDP‑bound states of Rho GTPases are controlled by 
guanine exchange factors (GEFs), GTPase‑activating proteins (GAPs), and guanine nucle‑
otide dissociation inhibitors (GDIs). GEFs activate small GTPases and exchange bound 
GDP to GTP. Conversely, GAPs facilitate the hydrolysis of GTP of GTPases. GDIs in the 
cytosol bind to Rho GTPases to keep them in their inactive GDP‑bound form.

In a broad sense, there are two types of cell polarization: spatial cue‑directed ver‑
sus spontaneous cell polarization, often referred to as “symmetry breaking”. These are 
not mutually exclusive. In many cases, an inherent tendency of self‑organize polarity is 
biased by an asymmetric cue. The positive feedback regulation by active Cdc42 plays 
a critical role in generating a concentrated cluster of Cdc42 at the cell membrane [26, 
30, 37]. In addition, a negative feedback loop is likely to be involved to enhance the 

Fig. 1  Localization of Cdc42 during the budding process. Spatial cues (red) recruit Cdc42 (blue) to a spe‑
cific location where a bud will be formed
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robustness of the cell polarity [29, 41]. Mathematical modelings, including determin‑
istic and stochastic models, have been widely applied to study the mechanisms of the 
cell polarization [2, 13, 26, 41, 50, 55, 57, 59]. These models apply diffusion‑driven 
instabilities to achieve pattern formation without relying on spatially inhomogeneous 
mechanisms, such as diffusion barriers, directed transport, and molecular cross‑linking. 
The systems instead require two conditions: (i) positive feedback to amplify local fluc‑
tuations; (ii) relatively large difference between the diffusion rates of chemical species. 
Under these two conditions, an inhomogeneous pattern can be induced by an arbitrarily 
weak perturbation. This mechanism is called the Turing‑type mechanism. Goryachev 
and Polkhilko greatly contributed to developing a Turing‑type model to study yeast 
polarization [26]. On the other hand, non‑Turing‑type models of polarity require per‑
turbations of finite strength to induce the pattern formation [50]. It is called the wave‑
pinning mechanism, which is dependent on the wave propagation. Based on determin‑
istic reaction‑diffusion equations, Turing‑type and wave‑pinning mechanisms have been 
applied to explain the symmetry breaking of the yeast polarization [13, 26, 34, 50, 72]. 
Moreover, stochastic modeling provides a tool to understand the random effect on the 
symmetry breaking and general cell polarization [2, 13, 39, 42].

Mathematical modeling has contributed significantly to our understanding of the 
mechanisms underlying the cell polarity establishment. This review will discuss recent 
progress in the mathematical modeling of cell polarization processes. We summarize 
some existing mathematical models on the cell polarization process in Sects. 2, 3, 4, and 
5. In Sect. 6, we suggest future applications for the mathematical modeling of the cell 
polarization and morphogenesis.

2  Polarization Through Positive Feedback Mechanism

In a yeast cell, the budding process fundamentally depends on Cdc42 polarization. 
Cdc42 in the cytoplasm will be recruited to the membrane based on the indication of 
intracellular or extracellular cues. Such a process involves the exchange of signaling 
molecules, feedback by molecular interactions, and molecular diffusion (Fig.  2). Sev‑
eral mathematical models were proposed to study this complex polarization process 
(Table 1).

Fig. 2  Schematic representation 
of system consisting of active 
and inactive Cdc42, membrane‑
bound and cytoplasmic Bem1 
complex, and RhoGDI protein
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2.1  Turing‑Type Mechanism

General dynamics of the polarization process can be characterized by the mass con‑
served activator‑substrate (MCAS) models. Primary research assumes that all cytoplas‑
mic Cdc42 molecules are inactive and all membrane‑bound Cdc42 molecules are active 
and another key feature is the mass conservation over the whole cell [2, 40, 41, 46, 62].

Marco et al. [46] constructed a mathematical model for characterizing the morphol‑
ogy of dynamically polarized protein distributions. They measured the values of param‑
eters from single‑cell experiments through analytical approaches. Their methods were 
applied to study polarized membrane proteins Cdc42 in budding yeast cells. They pro‑
posed that a balance of diffusion, directed transport, and endocytosis was sufficient for 
accurately describing polarization morphologies. In their model, the level of the polar‑
ized protein is represented by f

The spatial domain of the model is a sphere representing the membrane of a cell. The term 
df∇

2
m
f  is the lateral diffusion of f along the plasma membrane where ∇2

m
 represents the 

Laplacian operator on the cell membrane; the terms ea� f  and ea
�
(1 − �)f  represent the 

endocytosis of f off the membrane at and away from the actin cables; the last term rep‑
resents the direct transport from the cytoplasm to the membrane. In the model, the func‑
tion � represents the directed transport window function which controls the region of the 
membrane to which cytoskeletal tracks are attached (define � = 1 in region of directed 
transport/bud site; � = 0 elsewhere) and the term ∫ � is the integral of � over the whole 
domain. The last term of (1) represents the direct transport from the cytoplasmic pool of 
protein to the membrane. This model can be coupled with the actin cable dynamics to form 
positive feedback in the polarization system.

The steady‑state distribution can be stabilized through the feedback loop between 
Cdc42 and the formation of actin cables. The model predicted that feedback could lead to 

(1)
�f

�t
= df∇

2
m
f −

(
ea� +

ea

�
(1 − �)

)
f + hFCyto

�

∫ �
.

Table 1  List of some existing models for cell polarization in budding yeast

– denotes that item is not specified in the literature

Literature Type Mechanism

Marco et al. [46] Deterministic/Stochastic –
Goryachev and Pokhilko [26] Deterministic Turing
Altschuler et al. [2] Stochastic –
Mori et al. [50] Deterministic Wave‑pinning
Slaughter et al. [62] Stochastic –
Walther et al. [73] Deterministic/Stochastic Wave‑pinning
Lawson et al. [39] Stochastic –
Lo et al. [44] Deterministic Turing
Lee et al. [40] Deterministic Turing
Chiou et al. [9] Deterministic Turing/Wave‑pinning
Pablo et al. [55] Deterministic/Stochastic Turing
Cusseddu et al. [13] Deterministic/Stochastic Wave‑pinning
Liu and Lo [42] Deterministic/Stochastic Turing



Communications on Applied Mathematics and Computation 

1 3

relatively high rates of actin cable attachment in regions of high Cdc42 concentration and 
detachment in regions of low Cdc42, and stabilize the transport window. This model pro‑
vides insight into the function of positive feedback. The model proposed by Slaughter et al. 
[62] shares a similar structure of the model of Marco et al. [46]. As opposed to the previ‑
ous model, the internalization rates inside and outside the delivery window were assessed 
separately in this study.

Goryachev and Pokhilko [26] proposed an eight‑equation model for Cdc42 polarization. 
The model includes active and inactive Cdc42, membrane‑bound and cytoplasmic Bem1 
complex, and RhoGDI protein (Fig. 2). They reduced the large model to a two‑equation 
model with two variables X (active Cdc42) and Y (inactive cytoplasmic Cdc42)

where ∇2
m
 and ∇2

c
 represent the Laplacian operator on the cell membrane and in 

the cytoplasm, respectively; Ec = E0
c

(
1 + ∫

S
f (X(t, s))ds

)−1 represents the conser‑
vation of the total cellular amount of Cdc24. The form of function f can be derived as 
f (X) = a1X

2 + a2X + a3 , where the parameters a1 , a2 , and a3 depend on the reaction rates 
used in the eight‑equation model [26]. The spatial domain S of the model is a sphere repre‑
senting the membrane of a cell. In the model, the autocatalytic production of active Cdc42 
occurs through the parallel cubic and effective quadratic mechanisms corresponding to two 
different activation pathways. The term Ec�X

2Y  represents three reactions: (i) recruitment 
of the cytoplasmic feedback molecules (Bem1) to the membrane; (ii) formation of the acti‑
vated complex; (iii) activation of inactive Cdc42. Goryachev and Pokhilko [26] showed 
that this cubic term is critical for the Turing‑type mechanism and the formation of the 
Cdc42 cluster.

For simplification, the system was formulated as a typical two‑species MCAS model 
consisting of cytoplasmic GDP and membrane‑bound GTP, respectively, denoted by a(x, t) 
and b(x, t) (as shown in Fig. 3). The dynamics of a and b are governed by the lateral dif‑
fusion and the nonlinear interaction terms that lead to spontaneous pattern formation. The 
spatial domain M of the model can be considered as a sphere representing the membrane 
of a cell or a circle representing the cross‑section of the cell. This typical system could be 
coupled with general forms of positive feedback, and mathematical analysis was applied to 
identify parameter conditions for achieving the cell polarization. In the studies of Lo et al. 
[43, 44], a typical two‑variable model was proposed

where ân = ∫
M
andS∕|M| , â = ∫

M
adS∕|M| , and b̂ = ∫

M
bdS∕|M| represent the average 

values of an , a, and b over the cell membrane, respectively. The term |M| is the area of 
the cell surface. The first terms on the right‑hand side in (4) and (5) represent the diffu‑
sion rates of species a and b with the lateral surface diffusion rate Dm and the Laplacian 
operator ∇2

m
 on the cell membrane. The same diffusion coefficient Dm for a and b is used 

(2)
�X
�t

= Dm∇
2
m
X + Ec�X

2Y + Ec�XY − �X,

(3)
�Y
�t

= Dc∇
2
c
Y + �X − Ec�X

2Y − Ec�XY ,

(4)
�a
�t

= Dm∇
2
m
a + F

(
a, ân

)
b − koffa,
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m
b − F
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)
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(
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[26]. The term (1 − â − b̂) stands for the fraction of cytoplasmic signaling molecules. The 
term gon(1 − â − b̂) is the recruitment rate of the inactive molecules from the cytoplasm 
to the membrane and goffb is the rate at which membrane‑bound signaling molecules are 
extracted into the cytoplasm. The constant koff is the deactivation rate coefficient of signal‑
ing molecules from active form to inactive form.

The model assumes that the total number of signaling molecules in the whole cell is 
conserved and that the signaling molecules are uniformly distributed throughout the cyto‑
plasm due to the fast cytoplasmic diffusion. By assuming the activation rate is propor‑
tional to the fraction of cytoplasmic signaling molecules, the term F(a, �a2)(1 − â) in (10) is 
applied to model the activation process in the system.

In system (4)–(5), the feedback regulation occurs through the function F, which rep‑
resents the activation rate of signaling molecules. By assuming that active signaling mol‑
ecules form a feedback loop to promote the activation, the function F is positively propor‑
tional to the particle density of a.

According to the observations of experimental studies [26, 43, 54], several forms of 
positive regulations were proposed to study the cell polarity. First, Cdc42 is activated by its 
GEFs in a positive quadratic or linear feedback function form [26, 43]

where k11 and k12 represent the basal activation rate of Cdc42 and the activation rate from 
the feedback loop. The degree of the cooperativity n = 1 or 2 corresponds to the linear 
or quadratic feedback loop. This function form is direct cooperative feedback depending 
on the local density of the active molecule a, which has been used in many Turing‑type 
systems.

Second, the activation of Cdc42 can be saturated when the level of Cdc42 is over a cer‑
tain level. Thus, the function F is in the form of the Hill function [54]

where k21 is the activation rate, k22 is the magnitude of self‑activation, and k23 represents 
the saturation constant. This form shows a locally increasing recruitment rate at a low 

(6)F(a) = k11 + k12a
n,

(7)F(a) = k21 + k22
an

kn
23
+ an

,

Fig. 3  Schematic representation 
of system consisting of two equa‑
tions where a positive feedback F 
is incorporated
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Cdc42‑GTP density, but the rate is bounded above by a maximum value k21 + k22 . Feed‑
back regulations (6) and (7) include multi‑step cooperative interactions, such as recruit‑
ment and binding, which can be modeled through the term an with n ⩾ 2.

In [44], they considered that positive feedback molecules exist and assumed that 
these particular molecules are initially uniformly distributed in the cytoplasm and later 
recruited to the cell membrane by the active signaling molecules a. Therefore, the acti‑
vation rate F is proportional to the density of the membrane‑bound feedback molecules. 
The dynamics of the feedback molecules is much faster than that of the signaling mol‑
ecules [26, 43]. Lo at al. [44] assumed that the activation rate F is proportional to the 
quasi‑steady state of the density of the feedback molecules

This activation function models multi‑step cooperative interactions, which have been used 
in several biological Turing‑type systems. Nonlinear cooperativity is modeled by the term 
a2 , and the degree of the cooperativity is 2 [40]. The function form in (8) depends on a 
non‑local term â2 and the local density a. By considering the MCAS model, Lo et al. [44] 
obtained the parameter conditions for the existence of a polarized pattern. Their simula‑
tions showed that non‑local molecule‑mediated feedback is important for sharping the 
localization and giving rise to fast dynamics to achieve the robust polarization.

2.2  Wave‑Pinning Mechanism

Besides the Turing‑type mechanism, another set of models relies on bistable reaction 
kinetics to generate the polarity by wave‑pinning which resides in the system as follows:

where ∇2
m
 and ∇2

c
 represent the surface gradient operator and the gradient operator in the 

cytoplasm, respectively.
The variable a represents the active form of membrane‑bound signaling molecules, 

and the variable b represents the inactive form of cytosolic signaling molecules. The 
kinetic terms share the same form implying the conservation of the total amount of mol‑
ecules. The function F is the difference between the rates of the activation and the inac‑
tivation. The diffusion rate of the membrane‑bound molecules is significantly smaller 
than that of the cytosolic molecules, so that Da ≪ Db . The wave‑pinning mechanism is 
generally studied by the local perturbation analysis, which takes advantage of the large 
diffusion discrepancy that Da → 0 , Db → ∞ in the two‑variable reaction‑diffusion sys‑
tem. Wave‑pinning mechanism intrinsically depends on the wave propagation, and is 
thus distinct from the Turing mechanism, which is based on the growth of small local 
perturbations. Research suggests that another difference between the two models is that 
wave‑pinning can act much faster to generate a polarization pattern than the Turing‑type 
mechanism [8, 50].

Mori et al. [50] proposed the model with kinetics

(8)F
(
a, â2

)
= kon

k1 + k2a
2

1 + k1 + k2â
2
.

�a
�t

= Da∇
2
m
a + F(a, b),

�b
�t

= Db∇
2
c
b − F(a, b),
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where k0 is a basal GEF conversion rate, and the positive feedback is represented by a Hill 
function with the maximal rate � and the saturation parameter K. Conversion from active 
form to inactive form, mediated by GAPs, takes place at a constant basal rate � . The spa‑
tial domain considered in [50] is a one‑dimensional space [0,  L] with no‑flux boundary 
conditions. They analyzed the reaction‑diffusion system through the basic idea residing in 
a well‑known property of reaction‑diffusion systems with bistable kinetics, namely, propa‑
gation of fronts. Such a mechanism crucially depends on the exchange between active and 
inactive forms of the chemicals with unequal rates of diffusion and overall conservation to 
pin the waves into a stable polar distribution.

For the Turing‑type mechanism, positive feedback within the interaction term is suf‑
ficient to induce the cell polarization behavior. Analysis of such a mechanism mainly relies 
on linear stability analysis around the steady state to guarantee the instability of a homoge‑
neous steady state with small noise [21, 42, 44, 58, 70]. However, linear stability analysis 
can only check for instabilities that are induced by arbitrarily small noise near the steady 
state. Moreover, it cannot be easily used for a large nonlinear system, where finding the 
homogeneous steady‑state and eigenvalues will be extremely challenging.

Turing instability and wave‑pinning mechanisms should not be regarded as mutually 
exclusive. A system with interactions between multiple components can result in a model 
that induces the Turing instability and also generate the wave‑pinning behavior in some 
parameter regimes [9]. However, amplification by recruiting active molecules to the cell 
membrane is a common feature observed in all models. Jilkine et al. [34] indicated that the 
wave‑pinning models alone describe the adaptation to uniform stimulus but do not cap‑
ture the phenomena of spontaneous polarization or polarity maintenance in the absence 
of the stimulus. Wave‑based and Turing models differ in their response to multiple stimuli 
and a change in the direction of the stimulus. Thus, some classes of models are appropri‑
ate to describe some polarization behaviors but not others. In the parameter regimes, the 
Turing‑type model generated rapid competition between clusters and unipolar outcome, 
while multipolar outcome exists in the wave‑pinning model [9]. Spontaneous polarization 
is described well by Turing instability models. Gradient‑sensing models like the local exci‑
tation and global inhibition (LEGI) seem most pertinent to cells without a cytoskeleton that 
does not exhibit maintenance or spontaneous polarity. Wave‑based models are suitable to 
describe cells that need to rapidly reorient, such as neutrophils.

3  Oscillation of Cdc42 Cluster Through Negative Feedback Mechanism

Some experimental results indicated that negative feedback regulation is involved in the 
regulation of Cdc42 polarization [29]. The negative feedback plays a role in maintaining 
the robustness of Cdc42 localization and the oscillating behavior of Cdc42 cluster [25, 29, 
74]. Howell et al. [29] developed a mathematical model to demonstrate that negative feed‑
back would lead to the robustness of the cell polarity and make the kinetics of competition 
between signaling clusters relatively insensitive to polarity factor concentration. The model 
is similar to the one proposed by Goryachev and Pokhilko [26] and includes negative feed‑
back via the GAP activation or the Bem1p complex inactivation.

F(a, b) = b

(
k0 +

�a2

K2 + a2

)
− �a,
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To investigate how the polarization of Cdc42 is achieved in response to spatial cues 
in budding yeast, Lee et  al. [40] developed a model with a single partial differential 
equation that includes a spatial cue in positive feedback on the Cdc42 activation and 
a delayed negative feedback in the disassociation from membrane to cytoplasm (see 
Fig. 4). The computational domain M is a two‑dimensional region with no‑flux bound‑
ary conditions. The dynamics of active molecules are governed by

with â(t) = ∫
M
a(x, t) dSx∕|M| representing the average values of a over the domain M, and 

|M| is equal to the total area of the domain M. The function F(a, u) is the rate coefficient for 
recruitment and activation of Cdc42 from the cytoplasm to the membrane, which depends 
on the level of the spatial landmark cue u and the particle density of the membrane‑bound 
Cdc42 [44]. The function G is the disassociation rate of Cdc42 from the membrane to the 
cytoplasm. The deactivation rate varies with the activation level of Rga1, which may be 
regulated by a. With this assumption, G depends on the location x on the plasma mem‑
brane and the value of a with a delay of t1 . The study reveals that a proper axis of Cdc42 
polarization in haploid cells might be established through a biphasic mechanism involving 
sequential positive and transient negative feedbacks.

The observed oscillation and fluctuation of Cdc42 cluster support that the delayed nega‑
tive feedback is involved in the cell polarization system of budding yeast [40]. Moreover, 
Goryachev and Leda [25] showed that the necessary condition for achieving Cdc42 polar‑
ization or polarized localization is that when active Cdc42 increases, the activation rate 
grows faster than the rate of the deactivation. Liu and Lo [41] studied the model where the 
linear function of the deactivation was used instead of higher order functions. The spatial 
domain of the model can be considered as a sphere representing the membrane of a cell, or 
a circle representing the cross‑section of the cell. They provided a detailed linear stability 
analysis for the model with the positive feedback F(⋅, ⋅) and delayed negative feedback G(⋅)

with â(t) = ∫
M
a(x, t) dSx∕|M| and â2(t) = ∫

M
a2(x, t) dSx∕|M| . The function F is defined as 

(8). A linear function to model the deactivation rate G in (10) is used

(9)
�a
�t

= Dm∇
2
m
a + F(a, u)

(
1 − â

)
− G

(
a
(
x, t − t1

)
, x
)
a

(10)
�a
�t

= Dm∇
2
m
a

⏟⏟⏟
diffusion

+F(a, â2)(1 − â)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

activation

−G(a(x, t − �))a
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

deactivation

Fig. 4  Schematic representation 
of system consisting of a single 
equation where a positive feed‑
back F and a delayed negative 
feedback G are incorporated
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Their stability analysis provided a parameter condition for the existence of polarized solu‑
tions in the cell polarization system with delayed negative feedback suggested that we can 
observe the oscillating behavior of the signaling cluster in the simulations by controlling 
the length of the delay in negative feedback and the magnitude of positive feedback.

4  Enhance Robustness Through Septin Ring

Humans, animals, and other multicellular eukaryotes are composed of organs, tissues, and 
cells that are highly specialized in types and functions. Septins play an essential role in 
the morphogenesis of specialized cells and in guiding cell behaviors such as cell division 
and migration. In the frog Xenopus embryos, control of septins was a crucial control point 
for morphogenesis. In C. elegans, septins exhibit regulated expression in various neurons. 
Motor neurons in the mutant larvae fail to guide the axonal migration and locomotory 
behavior [19]. In mouse embryos, knock‑down of Sept14/Sept4 inhibited leading process 
formation in migrating cortical neurons [61]. In T cells, septin knock‑down causes mem‑
brane blebbing, excess leading‑edge protrusions, and lengthening of the trailing‑edge uro‑
pod, which relieves the migration [67]. Those results emphasize the role of septins in cell 
motility and the morphogenetic movements that regulate the development of tissue and 
organ.

Septins comprise a novel family of GTPases that polymerize into non‑polar filamentous 
structures and scaffold protein localization. In a yeast cell, septins are initially recruited 
to the bud site as unorganized cloudy patches in response to signaling cues [33]. During 
such a process, transient direct interaction between the septin Cdc11 and Cdc24, a GEF for 
Cdc42, creates temporary positive feedback to enhance septin recruitment and Cdc42 acti‑
vation [11]. Later, these unorganized paths of septins assemble and rapidly transform into a 
cortical septin ring in late G1 during which Cdc42 actively cycles between the GTP‑bound 
and GDP‑bound states [53]. The septin ring has an asymmetry in shape and structure, such 
that some proteins could localize specifically to the inside of the ring, and other proteins 
could localize to the outside of the ring [23, 36, 48]. This asymmetry persists until the bud 
emergence, after which the septin ring expands into a rigid hourglass‑shaped collar. Thus, 
the septin ring and collar maintain the asymmetric distribution of proteins by functioning 
as membrane diffusion barriers or scaffolds in the formation [7, 16]. Through these scaf‑
fold and barrier roles, septins affect multiple cellular processes related to the cell polariza‑
tion and division (see Fig. 5).

Septins are involved in the assembly of the endoplasmic reticulum (ER) diffusion bar‑
rier which limits the lateral diffusion of membrane proteins between the mother and the 
bud [12, 18, 32, 38, 65]. Septins promote the asymmetry in the plasma membrane by three 
potential mechanisms: (i) restricting the lateral diffusion, (ii) rigidifying the cell mem‑
brane, and (iii) regulating membrane‑cytoskeleton interactions spatially.

Okada et al. [53] assumed that septin functions as a diffusion barrier on the cell mem‑
brane (considered as a sphere in the simulations), so that the Cdc42 diffusion coefficient 
Dm(S) may depend on the concentration of septin or septin complex S

(11)G(a(x, t − �)) = g1 + g2a(x, t − �).

Dm(S) =
(
Dmax − Dmin

)
e−S∕KS + Dmin,
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which is the simplest exponentially decreasing function of S. At the same time, Cdc42 
induces the septin recruitment, and the recruited septins inhibit the Cdc42 activity in a 
negative feedback loop. Polarized exocytosis, which is also controlled by the Cdc42 activ‑
ity, triggers the conversion of the septin cap to a ring, relieving the inhibition of Cdc42. 
By combining live‑cell imaging and mathematical modeling, this study elegantly shows 
how the interplay of Cdc42, septins, and exocytosis shapes the septin ring and leads to 
the emergence of a new daughter cell. For further understanding of the mechanism of this 
regulation, analytic study for the mathematical models of Cdc42 and septin is an important 
direction in future study.

5  Stochastic Effect in Cdc42 Polarization

Another way to understand symmetry breaking is through stochastic modeling. Stochastic‑
ity has primarily been addressed in some studies showing that it can be critical for models 
[34, 39, 42]. In particular, stochastic dynamics can more robustly reproduce a highly polar‑
ized phenotype and track a moving pheromone input. Stochastic dynamics at the intracel‑
lular signaling level have become a standard modeling paradigm in many areas of biol‑
ogy. There are numerous cases where deterministic or mean‑field techniques do not capture 
the relevant dynamics of biological systems. Stochasticity is critical, especially when the 
number of key molecules is very small, as is often the case within a single cell. In such a 
scenario, the deterministic method cannot capture the detailed dynamics of each molecule 
and may fail to characterize the system dynamics correctly. Many methods were proposed 
to numerically simulate stochastic biochemical networks, the most common of which is the 
stochastic simulation algorithm (SSA)/Gillespie algorithm [20, 22]. For a spatial system, 
the domain is partitioned into several identical compartments with a length h and diffusion 
can be treated as a reaction in which a molecule in one compartment jumps to one of its 
neighboring compartments at a constant rate Dm∕h

2 , where Dm is the diffusion coefficient. 
One assumption of this spatial SSA is that the system is well mixed in each compartment. 
The spatial set‑up of this stochastic algorithm is presented in Fig. 6.

Fig. 5  System of Cdc42 and Septin. Cdc42 forms a cluster toward the bud tip with septin recruitment to 
form a ring. Septins are involved in the assembly of the ER diffusion barrier
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Altschuler et  al. [2] proposed and studied a stochastic state‑variable model for the 
following system:

where a molecule on the membrane may dissociate itself from the membrane at koff and 
recruit some molecule in the cytosol to its location on the membrane at kfb . A molecule 
from the cytosol may spontaneously associate itself to some random location on the mem‑
brane at kon . The term h is the fraction of all molecules on the membrane changes accord‑
ing to an ordinary differential equation. In [2], the cell membrane was considered as a cir‑
cle. This model suggests that an intrinsic stochastic mechanism through positive feedback 
alone is sufficient to account for the spontaneous emergence of the cell polarity. The polari‑
zation frequency has an inverse dependence on the number of signaling molecules, i.e., the 
frequency of the polarization decreases as the number of molecules becomes large. Their 
predictions have been verified to be consistent with the experimental observation of polar‑
izing Cdc42. The results support that a stochastic model with linear positive feedback is 
sufficient to achieve symmetry breaking. However, symmetry breaking cannot be achieved 
in a deterministic model with linear positive feedback.

Based on the work by Altschuler et al. [2], a stochastic neutral drift polarity model 
was proposed in [34]. The essential difference in the model proposed by Jilkine et  al. 
[34] is that positive feedback operates entirely through mass action kinetics, i.e., rate 
constants are not rescaled by total numbers of signaling molecules. They predicted that 
when the density of signaling molecules is below a critical value, positive feedback 
maintained an off state robustly. Over this critical threshold, it switched on the recurrent 
emergence of localized clusters.

Walther et al. [73] considered discrete molecular distribution with local recruitment 
in the wave‑pinning model. They applied local perturbation analysis to predict param‑
eter regimes for achieving the cell polarity in our deterministic system. Moreover, they 
compared these results with deterministic and stochastic spatial simulations. They con‑
cluded that the polarizing phenomenon was lost due to stochastic fluctuations.

(12)
�a
�t

= Dm∇
2
m
a + kon(1 − h) + kfb(1 − h)a − koffa,

Fig. 6  Spatial set‑up of the 
stochastic model
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Pablo et  al. [55] developed particle‑based simulations and found that molecular‑level 
fluctuations can facilitate the cell polarization. In particular, they created a computational 
platform that explicitly simulates molecules at and near the cell membrane and implicitly 
handles molecules away from the membrane. To evaluate stochastic effects, they also com‑
pared particle simulations to deterministic reactions. Comparisons suggested that stochastic 
fluctuations speed up polarity establishment and permit polarization in parameter regions 
predicted to be Turing stable. These effects can operate at Cdc42 abundances expected of 
yeast cells and promote polarization on timescales consistent with experimental results.

Liu and Lo [42] compared the parameter range for ensuring the emergence of the cell 
polarity between deterministic and stochastic Turing‑type systems. Based on the model in 
[44], they investigated the dynamics of a and b regulated by a general positive feedback 
function F(⋅),

on a one‑dimensional domain 0 ⩽ x ⩽ L with boundary conditions a(0, t) = a(L, t) , 
b(0, t) = b(L, t) . The terms ã = ∫

M
adS and b̃ = ∫

M
bdS represent the total numbers of a and 

b over the cell membrane, respectively.
The total number of active and inactive signaling molecules in the whole cell is con‑

served to be N, where synthesis and degradation are excluded. Considering an upper limit 
for the particle density at a local position on cell membrane, the function Q(a, b) is defined 
as Q(a, b) = 1 −

a + b

�
 , where the parameter � is the carrying capacity for measuring the 

maximum particle concentration at a local position on cell membrane; if not, i.e., 
𝛺 ≫ (a + b) , then Q(a, b) ≡ 1 to remove the limit on the recruitment of inactive signaling 
molecules from the cytoplasm. They applied the numerical method SSA and the analysis of 
the power spectrum to approximate the parameter ranges for the spontaneous emergence of 
the cell polarity in the stochastic system. The comparison indicated that both deterministic 
and stochastic methods fail to yield the polarity at a low number of molecules, and the sto‑
chastic fluctuations in the model can extend the parameter regime for achieving the cell 
polarization. This study also suggested that the parameter region for the cell polarization 
under the Hill function feedback is smaller than that with the quadratic function feedback.

Besides the mechanism for the emergence of the cell polarity, a key feature, the geom‑
etry, was neglected in these models where the shape or geometry can affect the reaction 
networks [69]. Although recent work has noted a qualitative effect of the geometry on sim‑
plified models of the cell polarization in yeast mating, a thorough characterization of these 
effects on more complex reaction networks and geometries has yet to be performed.

6  Future Application in Cell Morphogenesis

Morphogenesis is a fundamentally mechanochemical process. Shape changes are driven 
by active mechanical forces generated by chemical processes, which can be affected by 
the deformations and flows that occur [49]. While several experimental works studied 
cytokinesis in budding yeast, some mathematical and computational models were proposed 

(13)
�a(x, t)

�t
= Dm∇m

2a(x, t) + F(a)b − koffa,

(14)
�b(x, t)

�t
= Dm∇m

2b(x, t) − F(a)b + koffa + gon

(
N − ã − b̃

)
Q(a, b) − goffb
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for modeling cell morphogenesis. In the modeling of morphogenesis, there are two view‑
points: one regards the cell membrane as a solid shell with finite thickness, and the other 
views the cell membrane as soft matter exhibiting a solid‑fluid duality, as fluid deformable 
surfaces. Some recent related papers are listed in Table 2.

In the paper of Zmurchok et  al. [75], the author utilized the same method to investi‑
gate the influence of membrane tension on cell migration by considering two components, 
active Rac and inactive Rac. In the paper of Murphy and Madzvamuse [51], the authors 
coupled two components (F‑actin and bound myosin) and the bulk cell mechanics to inves‑
tigate the cell migration in 3D. However, due to the limitations of experimental conditions, 
the molecular basis of biological force generation is poorly understood.

On the other hand, several experiments and modeling research results show that mechan‑
ics can actively influence chemical patterns during development [3, 47, 75]. In the study 
of Brinkmann et al. [5], the authors proposed a simple positive feedback loop to investi‑
gate the interplay between chemical and mechanical processes during 3D tissue develop‑
ment. The influence of mechanics on morphogen dynamics is represented by including the 
function of the deformation gradient tensor into the reaction term of the reaction‑diffu‑
sion equation, which is based on the physical invariant. To couple chemical reactions with 
mechanics, the deformation gradient tensor is decomposed into the active and elastic parts. 
The critical assumption is that the intermediate configuration is stress‑free, and any stress 
is solely generated by the elastic response. Therefore, the material law depends only on the 
elastic response. All the equations of morphogen concentration and mechanics deforma‑
tion are calculated in the initial configuration using the finite‑element method. Although 
the authors provided some new insight by including mechanical pattern formation, only 
one component of morphogen was considered. Besides, since the feedback of mechanics 
on morphogen is described only by the determinant of the deformation gradient, the cur‑
rent model does not capture the effect of membrane shape on morphogen dynamics. They 
assumed that the interior of the tissue was hollow and thus did not consider the interaction 
between the cytoplasm and the tissue surface.

Recently, some studies have paid more attention to the mechanical properties of the cell 
surface. Tsai et al. [71] utilized the three‑dimensional coarse‑grained particle‑based model 
to show that the polarized Cdc42 signals are essential for initialing bud formation in Sac-
charomyces cerevisiae. This paper focused on the mechanical properties of the chitin and 

Table 2  Model classification of 
morphogenesis

Literature Solid surface Fluid 
deformable 
surface

Brinkmann et al. [5]
√

Torres et al. [68]
√

Mietke et al. [49]
√

Mahapatra et al. [45]
√

Murphy and Madzvamuse [51]
√

Stinner et al. [64]
√

Tsai et al. [71]
√

Zmurchok et al. [75]
√

Banavar et al. [3]
√
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septin rings. However, the modeling did not include the coupling between the chemical 
signaling pathways and cell mechanics for the yeast budding process. Many cellular pro‑
cesses require the cell polarization to be maintained as the cell changes shape, grows, or 
moves. How does the coupling between the chemical signaling pathways and cell mechan‑
ics affect the budding process? Does the regulation by mechanical forces enhance the 
robustness of Cdc42 polarization? How does the septin ring form under mechanical forces? 
What is the role of the septin ring in cell morphogenesis if the interaction between mechan‑
ical forces and chemical reactions is considered? Mathematical modeling is a helpful tool 
to provide some possible answers to these questions. Through coupling the mathematical 
model of Cdc42 with the system of mechanical forces, we can provide a framework for 
studying the interaction between the spatial profiles of signaling molecules and the cell 
morphogenesis. By comparing the simulations obtained from the model with different sce‑
narios, such as different regulation strategies between signaling molecules and membrane 
tension, we can learn more about the cell polarization in budding yeast. Moreover, the the‑
oretical results will be a step‑stone for developing further experimental investigation of cell 
morphogenesis.
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