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Abstract We consider the noise-induced transitions from a linearly stable periodic
orbit consisting of T periodic points in randomly perturbed discrete logistic map.
Traditional large deviation theory and asymptotic analysis at small noise limit cannot
distinguish the quantitative difference in noise-induced stochastic instabilities among
the T periodic points. To attack this problem,we generalize the transition path theory to
the discrete-time continuous-space stochastic process. In our first criterion to quantify
the relative instability among T periodic points, we use the distribution of the last
passage location related to the transitions from the whole periodic orbit to a prescribed
disjoint set. This distribution is related to individual contributions to the transition rate
from each periodic points. The second criterion is based on the competency of the
transition paths associated with each periodic point. Both criteria utilize the reactive
probability current in the transition path theory. Our numerical results for the logistic
map reveal the transition mechanism of escaping from the stable periodic orbit and
identify which periodic point is more prone to lose stability so as to make successful
transitions under random perturbations.
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1 Introduction

For randomly perturbed dynamic systems, it is well known that regardless how small
the noise amplitude is, the stochastic perturbation may have a significant influence
on the long timescale. For example, thermal noise can induce important physical and
biological metastability phenomena such as phase transitions, nucleation events and
conformational changes in macromolecules. These phenomena correspond to very
unlikely excursions of the random trajectories in the phase space, so these events are
usually called rare events. The trajectories have to overcome some barriers to escape
from the initial metastable state in order to enter another. To understand the occurrence
of rare events, it is of great importance to investigate the nonequilibrium statistical and
dynamic behaviors of those trajectories making successful transitions. Some interest-
ing questions concern how the ensemble of these successful trajectories depend on
the phase space of the unperturbed deterministic dynamic system: For example, what
structures in the phase space would be the dynamical bottlenecks responsible for
transition barriers; how the system leaves the initial metastable state and escapes its
accompanying basin of attraction, etc. For general dynamics, the metastable state may
not be a single point such as a local minimum on potential energy surface; it may be a
collection of points, such as limit cycle, periodic orbit, or even chaotic attractor. In this
paper, we are interested in determining through which location inside the metastable
set the transition trajectories will leave with a higher or dominant probability. As a
concrete example, we focus on stable periodic orbits in the randomly perturbed logistic
map.

In history, a vast majority of research aims to explore the barrier on the basin
boundary. For the diffusion process on a potential energy surface (a classic model
for chemical reactions Karmers 1940; Kampen 1992), the well-known transition-state
theory (Eyring 1935) states that the transition state is a saddle point with index 1 on
the potential energy surface. The progress of chemical reactions is mainly described
by “minimum energy paths”, which are the heteroclinic orbits connecting two local
minima through intervening saddle points. One can also calculate the transition rate
by computing the probability flux of particles that cross the dividing surface of two
neighboring potential wells. The concept of “most probable path” is very useful to
describe transitions under random perturbations for general continuous-time dynamic
systems. This path is a curve in the phase space with a dominant contribution to the
likelihood of transition trajectories at vanishing noise limit. From the mathematical
viewpoint, this most probable path is based on the large deviation principle (LDP)
for the underlying stochastic system. For instance, the well-known Freidlin–Wentzell
theory (Freidlin andWentzell 1998) shows that the most probable transition path from
a set A to another set B is theminimum action path, which minimizes the rate function
of the Freidlin–Wentzell LDP (also known as “Freidlin–Wentzell action functional”)
subject to the boundary value condition starting from A and ending inside B. The tran-
sition probability is dominantly determined by the minimal value of the rate function.
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Therefore, by analytically performing asymptotic analysis such as WKB or instanton
analysis (Matkowsky et al. 1983; Naeh et al. 1990; Maier and Stein 1992, 1993), or by
numerically solving some variational problem in the path space (E et al. 2004; Zhou
et al. 2008; Heymann and Vanden-Eijnden 2008), one can identify the most proba-
ble escape/transition path. This allows a close examination of the path and unstable
structures in the phase space. This idea based on the least action principle is quite
applicable for general continuous- or discrete-time dynamic systems. Applications to
the Lorenz model (Zhou 2009) and the Kuramoto–Sivashinsky PDE (Wan et al. 2010)
have already discovered the barriers on the basin boundary in types of saddle points
or saddle cycles.

For discrete maps perturbed by noise, there have also been extensive investigations
on the effect of random perturbations. Some works are based on brute-force simu-
lation to collect the empirical distributions of transition trajectories (Dykman et al.
1992). Applications of the large deviation rate function in the setting of discrete-time
maps have appeared quite early in Kautz (1987, 1988). The authors studied the tran-
sitions between stable fixed points, stable periodic orbits and chaotic attractors and
also showed empirical evidence that some transition state is saddle node. The research
in Graham et al. (1991), Kraut and Feudel (2003) used the quasi-potential (activation
energy) as a quantification of the stochastic stability for a metastable set and investi-
gated certain key invariant set on the basin boundary. The series work of Luchinsky
and Khonanov (1999), Silchenko et al. (2003, 2005) carried extensive computations
for the Lorenzmodel, Henonmap and other discrete-timemaps under additive random
perturbations. Their results seem to suggest that in the noise-induced escape from the
basin of attraction of a stable invariant set, the barrier crossing on the basin boundary
is mostly determined by the position and stability properties of certain saddle points or
saddle cycles. Recently, a new approach has been developed in Billings et al. (2002),
Bollt et al. (2002) to understand transport in stochastic dynamic systems. They use the
transition probability matrix (after discretizing and reindexing the continuous space)
to identify active regions of stochastic transport. Most of these existing studies deal
with the transition state (or the set) on the basin of attraction of a metastable state (or
invariant set).

In this paper, we are interested in the transitions from set to set with the purpose of
pinpointing the role of individual points in the initial metastable set. The motivation
comes from the questions: How the randomly perturbed system leaves the periodic
orbit (or limit cycle in continuous-time dynamics); how the stable self-sustained oscil-
lating motion eventually destroyed by the noise.

Specifically, we consider the random logistic map with additive Gaussian noise.We
are concerned with the noise-induced transitions from A to B—two disjoint sets in the
phase space. It is assumed that the unperturbed system has a linearly stable periodic
orbit (all eigenvalues are less than one in modulus), denoted as ξ = (ξ1, ξ2, . . . , ξT ),
where integer T is the period. To explore the stochastic instability of ξ , we select
A as the union of the T periodic points {ξi } (more precisely, A is the union of T
small windows around {ξi }. Refer to the full details in Sect. 2). Due to the noise, the
stochastic system will eventually get a chance to make a significant transition to a
distant set B away from A, after an exponentially long time wandering around the
metastable set A in random motions of nearly periodic oscillation. The question we
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shall address is how the system deviates from typical periodic oscillations, and when
the deviation does happen, whether the perturbed system has any preference to some
special periodic point to make the final successful transition toward B.

Traditional techniques based on the large deviation principle and the concept of
quasi-potential are not capable of addressing the above questions, although they study
themost active regions on the basin boundary of set A. If the unperturbed deterministic
flow can go from a point x to another point y, then the cost (quasi-potential) from x
to y is simply zero. Thus, if any two points in set A can reach each other by the
deterministic flow (periodic orbit or limit cycle certainly satisfies this condition), then
the quasi-potential is entirely flat on the whole set A. This means from any point in
A, the minimal action to escape the basin is the same. The extremal path minimizing
the action functional will take infinite time and usually also has an infinite length,
and the whole set A is the α-limit set of the extremal path. This suggests that there is
no particular location in the invariant set A from which the extremal path emits. The
action functional and the minimum action path cannot distinguish individual points
inside A in such cases. Similarly, the singular perturbation method (Matkowsky and
Schuss 1982) for the mean first passage time in the vanishing noise limit will give
a constant value of the WKB solution on the stable limit cycle and thus may not be
useful to our problem unless the prefactor is included.

Here we use a new and attractive tool, the transition path theory (E and Vanden-
Eijnden 2006, 2010; Vanden-Eijnden 2006; Metzner et al. 2009). The transition path
theory for continuous-time dynamical systems has been proved to be an effectivemath-
ematical tool to reveal transitionmechanisms of a few complex physical and biological
systems (Noé et al. 2009; Cameron and Vanden-Eijnden 2014). This article intends
to use the transition path theory to study stochastic instability for random discrete
maps. We shall formulate the transition path theory for the discrete-time continuous-
space Markov process. We then use three key ingredients in the transition path theory,
i.e., reactive current, transition rate and dominant transition path, to understand the
escape mechanism from the periodic orbit A for any finite (nonvanishing) noise. To
quantitatively compare the stochastic instability of the T individual periodic points,
we propose two rules: The first is the distribution of the last passage position among
these T points, and the second is the initial point of the dominant transition path.
Numerical results obtained clearly show the applicability of this theory in quantitative
understanding of the different roles of the individual points belonging to the same
periodic orbit.

The paper is organized as follows. In Sect. 2, we will set up our problem for the
random logistic map. In Sect. 3, we briefly review the existing methodologies. In Sect.
4, we present our method based on the transition path theory. In Sect. 5, we show
numerical results for the random logistic map. Section 6 is our concluding discussion.

2 Random Logistic Map

The randomly perturbed discrete map of our interest is the following

xn+1 = F(xn) + σηn
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where ηn ∼ N (0, 1) are i.i.d. standard normal random variables and the constant
σ > 0 is the noise amplitude. In this paper, we focus on a well-known example of F :
the logistic map. The logistic map is probably the simplest nonlinear mapping showing
periodic and chaotic behaviors. It is popularly used as a discrete-time demographic
model to represent population with density-dependent mortality. Mathematically, the
logistic map is written

x → F(x) := αx(1 − x),

where x is a number between zero and one that represents the ratio of existing
population to the maximum possible population. α > 0 is the parameter. When x
is out of the interval [0, 1], the logistic map simply diverges to infinity and never
returns. The dynamics of interest is in the interval [0, 1]. There are two fixed points
in this interval: 0 and 1 − 1

α
. When 0 < α < 1, the point 0 is the only stable fixed

point, and when 1 < α < 3, 1 − 1
α
is the only stable fixed point. Both fixed points

become unstable for α larger than 3. α = 3 is the parameter for the onset of a sta-
ble period-2 orbit, and this period-2 orbit disappears at α = 1 + √

6 ≈ 3.4495,
from which the period-4 orbit takes over. The stable period-2n orbit is followed
by the stable period-2n+1 orbit if α increases. This phenomenon is termed period-
doubling cascade and leads to the onset of chaos. Apart from this, tangent bifurcation
is found, e.g., the onset of stable period-3 orbit arises at α = 1 + 2

√
2 ≈ 3.828.

Further details about the logistic map can be found in some classic literature, e.g., Ott
(1993).

The random logistic map of our interest is the following stochastic dynamics
restricted on the interval D = [0, 1],

xn+1 = F(xn) + σηn mod 1 , (2.1)

where F(x) = αx(1 − x). We here impose the periodic boundary condition for the
Markov process {xn} so that all dynamics is restricted on the compact set D. This
will guarantee the unique existence of the invariant measure and thus ergodicity holds
for this stochastic process, which is a fundamental assumption in the transition path
theory.Other typeof boundary condition is also feasible such as the reflectionboundary
condition at x = 0 and x = 1.

The transition probability density of the discrete-time continuous-space Markov
process (2.1) is

P(x, y) =
∑

l∈Z

1√
2πσ 2

exp

(
− 1

2σ 2 (y − F(x) + l)2
)

, (2.2)

where the sum over the integer l is merely an adjustment for the periodic boundary
condition we used here. The density of the unique invariant measure, π(x), is the
solution of the following balance equation

∫

D
P(y, x)π(y) dy = π(x). (2.3)
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In other words, π(x) is the eigenfunction for the principle eigenvalue of the adjoint
transition kernel.

Now, we specify the sets involved in the transition problems for the randomly
perturbed logistic map (2.1). We restrict the study to linearly stable periodic orbit in
this paper, so the parameter α will always be selected such that the only stable invariant
set in the (unperturbed) logistic map is a (linearly) stable period-T orbit, denoted as
ξ = (ξ1, ξ2, . . . , ξT ). The order of (ξi ) in ξ is specified so that ξi+1 = F(ξi ). We
choose a small neighborhood A around the T periodic points. A disjoint set B will be
specified later. With these setups, the noise-induced transitions from A to B, named
as A–B transitions, will be our focus. The set A, as the union of the T disjoint small
windows, is specified by a width δa as follows

A = ∪
1≤i≤T

[ξi − δa, ξi + δa]. (2.4)

It is possible to specify different widths for different periodic points, or set the subin-
tervals asymmetric around ξi . It is also possible to use the level set of the invariant
measure, {x : π(x) < δ}, around the periodic points. Here we use (2.4) for simplicity.
The set B is placed near the unstable fixed point 0 (or 1) with a width δb:

B = [0, δb] ∪ [1 − δb, 1]. (2.5)

δa and δb are small enough so that A∩B = ∅ and [ξi−δa, ξi+δa]∩[ξ j−δa, ξ j+δa] = ∅
for any 1 ≤ i < j ≤ T . The set B in our logistic map example is around the unstable
point, the “furthest” boundary point from the stable set A. In general situations, this set
B is placed just outside the basin of attraction of the periodic orbit ξ and the instability
result about ξ is typically robust for small noise amplitude.

We introduced the nonzero width δa for the periodic orbit ξ because the space is
continuous, not discrete: At a fixed noise amplitude σ > 0, it makes no sense to
consider stochastic trajectories exactly leaving or entering some singleton points. In
practice, the specification of the window width δa should be given by the user who
decides to what extent the system is deemed out of the oscillatory status.

Usually, the width δa should be small enough so that each set Ai can represent
the transition behavior for point ξi inside. In theory, for a set A to truly reflect the
transition mechanism of escaping from ξ , the width δa should approach zero. In fact,
all calculations are based on a finite δa . Since set A has the metastability property
(linearly stable), then it follows that the conclusions based on the study of set A for
finitely small δa are quite robust and indeed give correct insights about the transition
mechanisms and stochastic instabilities for the stable periodic orbit ξ .

3 Related Works

We first briefly review two existing methods for the study of stochastic systems. The
known applications of both methods are mainly for exploring the basin boundary.
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3.1 Large Deviation Principle

We give a glimpse of the large deviation principle (LDP) for randomly perturbed
discrete map. For continuous-time diffusions processes, refer to the Freidlin–Wentzell
theory in Freidlin andWentzell (1998). We start from the transition probability for the
random mapping xn+1 = F(xn) + σηn , which is

p(x, y) = 1√
2πσ 2

exp

(
− (y − F(x))2

2σ 2

)
.

With the fixed initial point x0 at time 0 and ending point xn at time n, the probability
of a path γ = (x0, x1, . . . , xn−1, xn) is

P[γ ] =
n−1∏

i=0

p(xi , xi+1) ∝ Z−1
σ exp

(
− 1

σ 2 S[x0, . . . , xn]
)

, (3.1)

where Z−1
σ is the prefactor and the cost function S has the form of

S[γ ] = S[x0, . . . , xn] = 1

2

n−1∑

i=0

(xi+1 − F(xi ))
2. (3.2)

This cost function S is actually the rate function of the LDP at the vanishing noise
limit σ ↓ 0. By the Laplace’s method, the path probability P[γ ] is asymptotically

dominated by exp
(
− 1

σ 2 Smin

)
, where Smin = minγ S[γ ]. The minimum action path

(MAP) γ ∗ is such that S[γ ∗] = Smin. If this minimal action Smin is viewed as a
function of the initial point x0 and the ending point xn for all possible n, then it is the
so-called quasi-potential, which is quite useful for quantifying the stability of each
basin against the random perturbation (Freidlin and Wentzell 1998; Kautz 1987; E
et al. 2012). When the initial point x0 is in a stable structure (such as fixed point,
periodic orbit and chaotic attractor) of the phase space, and xn is out of the basin of
attraction of this stable structure, the MAP is usually called the most probable escape
path (MPEP). The intersection part of the MPEP with the basin boundary is quite
revealing in search of transition states or active regions for crossing the boundary.

One obvious feature of this least action method based on the LDP is that the cost
is zero for a path from ξ1 to ξ2 if ξ2 is exactly equal to F(ξ1). This means that starting
from any point in the same period-T orbit, the minimal action is the same. Thus, one
can not tell which point in the periodic orbit, limit cycle or even chaotic attractor is
more prone to random perturbation, since they share the same value of the minimal
action.

3.2 PDF Flux

To study the bi-stabilities in the stochastically perturbed dynamical systems, Bollt
et al. (2002), Billings et al. (2002) proposed a method on the transport of probability
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density function under the discrete map, in which the one-step transport is described
by the Frobenius–Perron operator, i.e., the adjoint of the transition kernel P(x, y).
They investigated how an initial distribution is transported to a given region in the
phase space under the action of this operator:

ρ(x) → F[ρ](x) :=
∫

D
P(y, x)ρ(y) dy.

Depending on the initial distribution, they call F[ρ] the area flux if ρ is uniform and
call F[ρ] the PDF flux if ρ is the invariant measure π (Eq. (2.3)). For a given set
A ⊂ D, the “mass flux into A” is defined as

∫

x∈A

(∫

y∈D\A
P(y, x)ρ(y) dy

)
dx

and “mass flux out of A ” (by switching A and its complement set D \ A) is defined as

F−
A =

∫

x∈D\A

(∫

y∈A
P(y, x)ρ(y) dy

)
dx

=
∫

y∈D\A

(∫

x∈A
P(x, y)ρ(x) dx

)
dy

=
∫

x∈A
ρ(x)

(∫

y∈D\A
P(x, y) dy

)
dx .

(3.3)

The quantity ρ(x)P(x, y) was used for x in one basin and y in another basin to
investigate where a trajectory is most likely to escape the basin boundary. For a few
applications (Billings et al. 2002), the saddle cycles on the basin boundary usually
have the maximal flux across the boundary.

4 Transition Path Theory for Discrete Map

Now, we return to our problem of the randomly perturbed logistic map (2.1). We will
first formulate the transition path theory for discrete map. Then, we identify the point
in the orbit ξ with the highest probability mass of being the last passage position
during the A–B transition, which is actually the point with the biggest contributions
to the transition rate. To further study the development of the transition probability
currents after emitting the set A, we will carry out the pathway analysis and target
for the dominant transition paths. The precise definitions of these concepts will be
explained soon.

We remark that the first approach based on the transition rate is relatively easy and
quite universal for any situations. The second path-based approach needs a thorough
exploration of connected paths based on network theory, and thus, it could have dif-
ficult situations that fail to compare stochastic instability in a quantitative way due to
complexity of pathways. Our logistic map example does not run into this problem-
dependent difficulty and shows a clean result. In addition, the two approaches may
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also give two different conclusions since the viewpoints of interpreting and comparing
the stochastic instabilities are different.

4.1 Transition Path Theory (TPT) for Randomly Perturbed Discrete Map

The original TPT was formulated for the continuous-time continuous-space Markov
process (E and Vanden-Eijnden 2006, 2010; Vanden-Eijnden 2006). The TPT for
the continuous-time discrete-space Markov process (jump process) was developed in
Metzner et al. (2009), in which a detailed analysis for the pathways on the discrete
space is of particular interest. Here we present the method of TPT in the setting of the
discrete-time continuous-space Markov process.

The transition path theory does not consider the limit of vanishing noise. It assumes
that the stochastic system is ergodic and has a unique invariant measure. The main
focus of the TPT is the statistical behavior of the ensemble of reactive trajectories
between two arbitrary disjoint sets. Assume that A and B are two disjoint closed
subsets of the state space D (D = [0, 1] for our example of the logistic map), each of
which is the closure of a nonempty open set. The transition of our interest is from A
to B. For a discrete-time homogeneous Markov process {Xn : n ∈ Z}, define the first
hitting time after time m and the last hitting time before time m of A ∪ B as follows,
respectively,

H+
AB(m) := inf{n ≥ m : Xn ∈ A ∪ B},

H−
AB(m) := sup{n ≤ m : Xn ∈ A ∪ B}. (4.1)

Then, for a generic trajectory (Xn)n∈Z, the ensemble of A–B reactive trajectories
is defined the collection of pieces of the truncated trajectories: {Xn : n ∈ R}, where
n ∈ R if and only if

XH+
AB (n+1) ∈ B and XH−

AB (n) ∈ A.

R is the set of times which Xn belongs to an A–B reactive trajectory. Refer to Fig. 1
for one piece of reactive trajectory extracted from a generic trajectory. The intuition
of A–B reactive trajectories is that the points on these reactive trajectories will first
reach B rather than A and came from A rather than B.

The most important ingredient in the TPT is the probability current for A–B reac-
tive trajectories. For the continuous state space D, we introduce its space-discretized
version first:

J(x, y,
x,
y) := lim
N→∞

1

2N + 1

−N∑

n=N

(
1[

x− 
x
2 ,x+ 
x

2

](Xn)1[
y− 
y

2 ,y+ 
y
2

](Xn+1)0

1A
(
XH−

AB (n)

)
1B

(
XH+

AB (n+1)

) )
, (4.2)

where 1{·}(·) is the indicator function. The A–B reactive probability current is
defined as the following limiting function for x and y in D,

J (x, y) := lim

x,
y→0

J(x, y,
x,
y)


x
y
.
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Fig. 1 The snapshot of a generic trajectory (dots in the plot) and one reactive trajectory (three pointsmarked
with circles) of the randomly perturbed logistic map observed in the time interval [4896620, 4896780]. The
set A is the union of A1 and A2 around the periodic points ξ = (0.5130, 0.7995), corresponding to two
narrow bands with length 2δa = 0.04 shown by solid horizontal lines. The bounds of the set B near 0 and
1 are shown by dashed lines. α = 3.2, σ = 0.04

We sometimes just call J the reactive current whenever the specification of the sets A
and B is clear.

The above definition of the reactive current J is based on the time average for an
infinitely long generic trajectory. To obtain an ensemble average,we need to assume the
Markov process {Xn} is ergodic, i.e., the unique existence of the invariant probability
density such that π(x) = lim

N→∞
1
N

∑N−1
n=0 1{x}(Xn). Then, (4.2) leads to the following

formula of the reactive current

J (x, y) = q−(x)π(x)P(x, y)q+(y), x ∈ D, y ∈ D. (4.3)

where P(x, y) is the transition density function of the Markov process: P(x, y) dy =
P

[
Xn+1 ∈ [y, y + dy)|Xn = x

]
. q+ and q− are called the forward and backward

committor functions, defined as follows, respectively:

q+(x) := P[XH+
AB (0) ∈ B|X0 = x], q−(x) := P[XH−

AB (0) ∈ A|X0 = x].

By definition, the committor functions satisfy the following boundary conditions
{
q+(x) = 0, and q−(x) = 1, if x ∈ A,

q+(x) = 1, and q−(x) = 0, if x ∈ B.
(4.4)

This implies the fact

J (x, y) = 0, when x ∈ B, y ∈ D or x ∈ D, y ∈ A. (4.5)

It is known from E and Vanden-Eijnden (2006), Metzner et al. (2009) that the com-
mittor functions satisfy the following Fredholm integral equation on the domain
x ∈ D\(A ∪ B), respectively,
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q+(x) =
∫

D
P(x, y)q+(y) dy, (4.6)

and

q−(x) =
∫

D
P−(x, y)q−(y) dy, (4.7)

where

P−(x, y) := 1

π(x)
P(y, x)π(y) (4.8)

is the transition kernel of the time-reversed process {X−n}n∈Z. Since the transition
kernel P is irreducible in the ergodicity assumption, then the functions q+(x) and
q−(x) are always strictly positive for any x /∈ A ∪ B.

Remark 1 Compared with the PDF flux π(x)P(x, y) in Sect. 3.2, the A–B reactive
current J (x, y) = π(x)P(x, y)q−(x)q+(y) in the transition path theory includes
the additional global information for the A–B transitions encoded by the committor
functions. These two quantities are equal only when x ∈ A and y ∈ B.

We shall address two main issues about the methods based on the TPT for applica-
tion to the random perturbed discrete map. The first is the robust calculation of reactive
current function J (x, y); the second is how to use this reactive current function to ana-
lyze reaction pathways as well as the reaction rate. Based on these developments, we
shall carry out the study for the roles of individual points in A and evaluate their
stability in the context of A–B transitions.

We rewrite the Eqs. (4.7) and (4.8) by introducing q̃−(x) := π(x)q−(x),

q̃−(x) =
∫

D
P(y, x)q̃−(y) dy, x ∈ D\(A ∪ B). (4.9)

The boundary condition is q̃−(x) = π(x) for x ∈ A and q̃+(x) = 0 for x ∈ B.
Eq. (4.9) has the same form as Eq. (4.6) if transposing the transition kernel P . There
are two reasons for introducing q̃−: (1) The reactive current J , rather than q− itself,
is of more interest in understanding the transition mechanism, and it is not necessary
to calculate q− in order to obtain J ; (2) the numerical method to calculate q− directly
is instable when the noise intensity σ is too small. This problem can be resolved by
calculating q̃− instead.

The system (4.9) and (4.6) together with the boundary condition (4.4) can be solved
as a linear system after discretizing the spatial domain D = [0, 1]. q+(x) and q̃−(x)
typically exhibit boundary layers or discontinuities at the boundaries of A and B. In
our numerical discretization, the spatial mesh grid is adjusted in a moving mesh style
to distribute more points near the boundaries by checking the derivatives |∇q+| and
|∇q̃−| (refer to Zhou et al. 2008 for details).

Since

J (x, y) = q−(x)π(x)P(x, y)q+(y) = q̃−(x)q+(y)P(x, y), (4.10)
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then we can see from (4.6) and (4.9) that

∫

y∈D
J (x, y)dy = q−(x)π(x)

∫

y∈D
P(x, y)q+(y) dy

= q̃−(x))q+(x), ∀x /∈ (A ∪ B); (4.11)∫

x∈D
J (x, y) dx = q+(y)

∫

x∈D
P(x, y)q̃−(x) dx

= q̃−(y)q+(y), ∀y /∈ (A ∪ B). (4.12)

The above quantity on the right hand sides is actually the probability density of reactive
trajectories:

πR(x) := q−(x)π(x)q+(x) = q̃−(x)q+(x), ∀x ∈ D\(A ∪ B).

From the ergodicity condition, this probability density πR(x) corresponds to the
following time average: πR(x) dx = limN→∞ 1

2N+1

∑N
−N 1R(n)1[x,x+ dx)(Xn).

Equations (4.11) and (4.12) together show that

∫

y∈D
J (x, y) dy =

∫

y∈D
J (y, x) dy = πR(x), for any x ∈ D\(A ∪ B). (4.13)

So, the reactive current J (x, y) defines a flow at any x ∈ D\(A ∪ B) since the inflow
is equal to the outflow.

Remark 2 For the transition kernel P(x, y) based on the discrete map, it is possible
that q±(x) is continuous only in the open set D\(A∪ B). The one-sided limit from the
open set D\(A∪ B)may not equal the boundary value at ∂A or ∂B (note that A and B
are closed set and ∂A ⊂ A, ∂B ⊂ B). Thus, there may be a jump discontinuity q±(x)
at x ∈ ∂A ∪ ∂B. Refer to Fig. 3 in the next section for the example of logistic map.
This means that J (x, y) in (4.10) may also have the jump discontinuities whenever x
or y crosses the boundaries at ∂A ∪ ∂B.

4.2 Transition Rate and Most-Probable-Last-Passage Periodic Point

The reactive current J allows us to calculate how frequently the transition occurs from
A to B, i.e., the transition rate. The transition rate is the average number of transitions
from A to B per unit time, defined by

κAB := lim
N→∞

#{transitions from A to B in [−N , N ]}
2N + 1

.

With the definition of the set R, we can rewrite the above as

κAB = lim
N→∞

1

2N + 1

N∑

−N

1A(Xn)1D\A(Xn+1)1R(n).
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Remark 3 When the set A is the union of disjoint compact subsets A = ∪K
i=1Ai , then

it is obvious that the A–B transition rate has the following decomposition

κAB =
K∑

i=1

κAi B :=
K∑

i=1

lim
N→∞

1

2N + 1

N∑

−N

1Ai (Xn)1D\A(Xn+1)1R(n),

whereR still means the A–B transitions. Then, the ratio
κAi B

κAB
is exactly the probability

that the reactive trajectory selects the subset Ai to leave the set A during its last stay
in the set A.

Using ergodicity, the transition rate is calculated as follows

κAB =
∫

x∈A

∫

y∈D\A
J (x, y) dy dx =

∫

x∈A

∫

y∈D
J (x, y) dy dx

=
∫

x∈A
q−(x)π(x)

∫

y∈D
P(x, y)q+(y) dy dx

=
∫

x∈A
π(x)

∫

y∈D
P(x, y)q+(y) dy dx,

(4.14)

where the definition J (x, y) = π(x)P(x, y)q−(x)q+(y) and the facts that J (x, y) =
0 for y ∈ A and q−(x) = 1 for x ∈ A are applied.

From Eq. (4.13), it is clear that

∫

x∈A∪B

∫

y∈D
J (x, y) dy dx =

∫

x∈A∪B

∫

y∈D
J (y, x) dy dx .

By Eq. (4.5), the above equality becomes

∫

x∈A

∫

y∈D
J (x, y) dy dx =

∫

x∈B

∫

y∈D
J (y, x) dy dx .

Thus, there is an equivalent formula for the transition rate:

κAB =
∫

x∈B

∫

y∈D
J (y, x) dy dx =

∫

y∈B

∫

x∈D
J (x, y) dx dy. (4.15)

The transition rate (4.14) is the total contribution of the reactive current out of A
and into B. To distinguish the different points in A, where the reactive current J is
initiated, we introduce the following two functions r−

AB(x) and r+
AB(y) to represent

the local contribution of the reactive current to the reaction rate:

r−
AB(x) :=

∫

D\A
J (x, y) dy =

∫

D
J (x, y) dy, for x ∈ A, (4.16)

r+
AB(y) :=

∫

D\B
J (x, y) dx =

∫

D
J (x, y) dx, for y ∈ B. (4.17)
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Note that like Eq. (4.14), r−
AB(x) = π(x)

∫
y∈D P(x, y)q+(y) dy, requiring only the

forward committor function q+.
It is easy to see that r−

AB and r+
AB defined in (4.16) and (4.17), after normalization,

are known as the reactive exit and reactive entrance distributions in the transition
path theory (Cameron and Vanden-Eijnden 2014; Lu and Nolen 2015). Indeed, based
on Remark 3, the probability density function of the last passage position on A of a
typical reactive trajectory is then given by r−

AB(x)/κAB (note
∫
A r

−
AB(x) dx = κAB).

Similarly, the probability density function of the first entrance position on B of a
typical reactive trajectory is then given by r+

AB(y)/κAB . We then define the most-
probable-last-passage point in A as

x̂ := argmax
x∈A

r−
AB(x)

κAB
= argmax

x∈A
r−
AB(x), (4.18)

and the most-probable-first-hitting point in B as

ŷ := argmax
y∈B

r+
AB(y)

κAB
= argmax

y∈B r+
AB(y). (4.19)

Of our particular interest is the most-probable-last-passage point x̂ in A. We can think
of this point as the most A–B “reactive” point in the set A. In terms of instability due
to the noisy perturbation, this point is the least stable one in the set A conditioned on
the transitions from A to B.

For the problem of the periodic orbits ξ in the logistic map, the set A is defined as
the union of the neighbors of the T periodic points ξ1, . . . , ξT , i.e., A = ∪1≤i≤T [ξi −
δa, ξi + δa]. Since δa is small, we can use

r−
AB(i) := 1

2δa

∫ ξi+δa

ξi−δa

r−
AB(x) dx . (4.20)

to represent the contributions to the total flux κAB from point ξi . We define themost-
probable-last-passage periodic point (abbreviated to “MPLP”) as point ξî having
the maximal value {r−

AB(i) : i = 1, . . . , T }. This MPLP is the most unstable periodic
point in the transition from periodic orbit ξ = (ξ1, . . . , ξT ) to set B.

Remark 4 The transition rate κAB is the integration over x ∈ A for the function

π(x)
∫

y∈D\A
P(x, y)q+(y) dy dx .

As mentioned in Remark 1, compared with the PDF flux defined in Eq. (3.3) (where
ρ = π ), the difference between these two formulations is that q+(y) is multiplied
onto P(x, y) here. The inclusion of this forward committor function indicates that in
the transition path theory, the object in focus is the A–B reactive trajectories, which
have to reach the target set B before returning to A. The trajectories counted in the
PDF flux (3.3) is a much larger set containing those trajectories which fail to reach B
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but return to A. For the same stochastic system, κAB is usually much smaller than the
quantity F−

A in Eq. (3.3) unless B is infinitely close to D\A.
The definition of the above MPLP is associated with the integration of the reactive

probability current J (x, y) for y over the set D \ A. It does not take account what
happens after the reactive current leaves A from point x . So, it is possible that, once
the reactive current flows out of A from a single MPLP x̂ , the reactive current actually
quickly diverges and spreads out. As a result, in measurement of competency of paths
from A to B, different transition paths might carry significantly different values of
reactive currents. We then need to find the dominant one among all the transition
paths connecting A and B. If we can successfully identify this dominant path, its
starting point in set A will indicate this point has strong stochastic instabilities among
all periodic points. When the dominant transition paths are not unique due to the
complexity of the problem, it is possible that the starting points of these dominant
transition paths may lie in multiple subsets Ai if A = ∪T

i=1Ai : This simply means
that all these subsets (or the periodic points) are equally instable by this path-based
criterion.

4.3 Competency and Maximum Competency Periodic Point

The analysis of pathways is built on the effective reactive probability current
J+(x, y), which is defined by

J+(x, y) := max(J (x, y) − J (y, x), 0). (4.21)

J+(x, y) is always nonnegative and represents the net reactive flux from x to y. We
may rewrite

J+(x, y) = J (x, y) − J (y, x) + |J (x, y) − J (y, x)|
2

.

Using Eq. (4.13), we obtain

∫

y∈D
J+(x, y) dy =

∫

y∈D
J+(y, x) dy, for any x ∈ D\(A ∪ B).

When y ∈ A, J (x, y) = 0, and it follows that when x ∈ A, J+(x, y) =
max(J (x, y) − J (y, x), 0) = J (x, y). The rate formula (4.14) can also be written
in terms of the effective current J+:

κAB =
∫

x∈A,y∈D
J (x, y) dx dy =

∫

x∈A,y∈D
J+(x, y) dx dy.

The effective current J+(x, y) naturally leads to a series of concepts about the
transition paths. These concepts are well described for countable discrete space in
Metzner et al. (2009). Indeed, in terms of the algorithms, we can divide the continuous
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domain D into a large number of very fine intervals (much smaller than the widths
δa and δb) and apply the discrete algorithms based on the graph theory described in
Metzner et al. (2009). The theoretical formulation we give below is for a continuous-
space domain, and we believe this formulation has its own interest. To represent the
effective current J+, we shall use a generic two-dimensional function f (x, y), which
is defined on D×D and associated with the given disjoint sets A and B. This function
f (x, y) is an analogue of the weight for an edge from one node x to another y in the
graph theory. Clearly, f has to meet the properties that J+ does. We assume that the
triplet (A, B, f ) for a compact state space D satisfies the following assumption.

Assumption 1 (1) The sets A and B are disjoint nonempty closed subsets of the state
space D and A ∪ B � D;

(2) f (x, y) is always nonnegative for all (x, y) ∈ D × D and

f (x, y) = 0, if x ∈ B, y ∈ D or x ∈ D, y ∈ A.

(3) f (x, x) = 0, for x ∈ D.

(4) For x ∈ D\(A ∪ B),

∫

y∈D
f (x, y) dy =

∫

y∈D
f (y, x) dy.

(5) f (x, y) is bounded and piecewise continuous in D × D.

Definition 1 Given twodisjoint subsets A′, B ′ in D and the triplet (A, B, f ) satisfying
Assumption 1, for any n ∈ N,ω = (ω0, ω1, . . . , ωn) ∈ D×· · ·×D is called an A′–B ′
transition path associated with (A, B, f ), if

(1) ω0 ∈ A′, ωn ∈ B ′;
(2) f (ωi , ωi+1) > 0 for 0 ≤ i ≤ n − 1.

Note that property (2) in Assumption 1 implies thatωi /∈ (A∪B) for all 1 ≤ i ≤ n−1.
We actually use A′ = A (or A′ ⊂ A) and B ′ = B in most cases. Occasionally,

we need a different set B ′ from B. The following definition of the path competency is
from the graph theory.

Definition 2 We define the competency of a path ω = (ω0, ω1, . . . , ωn) as the min-
imal value of f (ωi , ωi+1) for all 0 ≤ i ≤ n − 1, that is,

Cp(ω) := min
0≤i≤n−1

f (ωi , ωi+1).

Remark 5 The notion of “competency” defined above is referred to as capacity in the
context of graph theory. However, the terminology “capacity” is also used and plays a
significant role in the classical potential theory for stochastic systems which is closely
related to the transition path theory. To avoid confusion, we use a different terminology
“competency”.

Property (2) in Definition 1 implies that the competency of any A′–B ′ transition path
is always strictly positive.
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Definition 3 With the same assumption in Definition 1, a subset C of the product
space D×D is called A′–B ′ f -connected, if there exists at least one A′–B ′ transition
path ω = (ω0, ω1, . . . , ωn) for some n ≥ 1, associated with the triplet (A, B, f ),
such that every directed edge (ωi , ωi+1) belongs to C for 0 ≤ i ≤ n − 1.

The collection of all A–B transition paths with length n and all edges contained in
set C is denoted by Gn(C). G(C) := ∪nGn(C).

We drop out the function f most time and simply say the set C is A′–B ′ connected.
We are particularly interested in the special set C as the superlevel set of the function
f .

Definition 4 With the same assumption in Definition 1, define the superlevel set of
function f for any nonnegative real number z,

Lz := {(x, y) ∈ D × D : f (x, y) ≥ z}.

The A′–B ′ competency of the function f , denoted as z∗(A′, B ′), is defined as

z∗(A′, B ′) := sup
{
z ≥ 0 : Lz is A

′-B ′connected
}
. (4.22)

Lz∗(A′,B′) is call the minimal A′–B ′ connected superlevel set of f if the maximizer
can be reached:

z∗(A′, B ′) = max
{
z ≥ 0 : Lz is A

′-B ′ connected
}
.

As a convention, when A′ and B ′ are not specified, A′ is A and B ′ is B by default
and we simply say the competency of the function f , the minimal connected set and
denote z∗(A′, B ′) as z∗.

Remark 6 The relation between Definitions 2 and 4 is that

z∗(A′, B ′) = sup
{
Cp(ω) : ω is an A′–B ′ transition path

}
. (4.23)

Indeed, if ω is an A′–B ′ transition path, then Lz is A′–B ′ connected for z ≤
Cp(ω); conversely, if Lz is A′–B ′ connected, then any A′–B ′ transition path ω =
(ω0, ω1, . . . , ωn) with edges contained in Lz must satisfy f (ωi , ωi+1) ≥ z for all
0 ≤ i ≤ n − 1, thus Cp(ω) ≥ z. In particular, all the A–B transition paths with edges
in the minimal A–B connected superlevel set Lz∗ must have the same competency z∗
as the function f .

Definition 5 With the same assumption in Definition 1, let z∗(A′, B ′) be the A′–B ′
competency of f in Definition 4. If Lz∗(A′,B′) is A′–B ′ f -connected, we then call all
the A′–B ′ transition paths with edges in Lz∗(A′,B′) the A′–B ′ dominant transition
paths. The A–B dominant transition paths are simply called the dominant transition
paths.
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In our problem about the periodic orbit ξ = (ξi )i=1,...,T , the set A is ∪T
i=1Ai where

Ai = [ξi − δa, ξi + δa]. Note the following important fact from (4.23),

z∗(A, B) = max
i

z∗(Ai , B).

Therefore, we propose to make use of the competencies, z∗(Ai , B) for 1 ≤ i ≤ T , to
compare the instability of each ξi . The point ξî such that z

∗(Aî , B) = maxi z∗(Ai , B)

is defined as the maximum competency periodic point (MCPP). The interpretation
of this MCPP is that there exists a transition path emitting from this MCPP (more
precisely, its window Aî ) whose competency is larger than any transition path emitting
from any other periodic point. Thus, thisMCPP is deemed themost active (least stable)
periodic point in the noise-induced transition from A to B. If this MCPP ξî is unique,
then all the dominant transition paths will start from Aî . In case that the maximizers
are not unique, the competencies z∗(Ai , B) in general still give a ranking in terms of
stochastic instability for all periodic points ξ = (ξi ).

In the community of graph algorithms and network optimization, the dominant
transition path is called the widest path, also known as the bottleneck shortest path
or the maximum capacity path. There are plenty of practical algorithms to find the
widest path (Ahuja et al. 1993). In what follows, we discuss the identification of the
A–B competency z∗ and the dominant transition paths. The purpose here is not to
present details of the practical implements for discrete state space, but to demonstrate
the concepts and the related theoretical properties in the continuous space.

It is easily seen from (4.23) that z∗ > 0. If z > supD×D f , then Lz is empty.
So, the competency z∗ of f satisfies 0 < z∗ ≤ supD×D f < ∞. The following
properties are obvious: (1) If Lz1 is connected, then so is Lz2 for any z2 < z1; (2)
Lz is connected for any 0 < z < z∗; and (3) Lz is not connected for any z > z∗.
So, one can use a binary search algorithm to compute the competency z∗ of f within
the interval (0, sup(x,y)∈D×D f (x, y)]. The obtained numerical result for z∗ is a tiny
interval [z∗l , z∗u] bracketing the true value z∗. To judge a given set Lz is A–B f -
connected, we can use the following set-to-set map �z to propagate the set A until
reaching B if it is reachable. The map �z provides a set-tracking algorithm to search
the transition path from A to B, an analogue of the breadth-first search algorithm. The
same procedure is used to test every Ai–B f -connection in order to identify z∗(Ai , B).
Actually, since A = ∪Ai , the set-tracking is performed in parallel for all Ai .

Definition 6 For any z > 0, we define the map �z on the collection of all subsets of
D by

�z(C) =:
⋃

x∈C
{y : (x, y) ∈ Lz}, ∀C ⊂ D.

Denote the compound mapping by

�m
z (C) := �z

(
�m−1

z (C)
)

and �0
z (C) := C .
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Let

N (z) := min
{
n ≥ 1 : �n

z (A) ∩ B �= ∅}
.

So, N (z) is the minimal length of all A–B transition paths. N (z) < ∞ if and only if
Lz is A–B connected.

To avoid the technicality and ease the presentation, we assume that Lz∗ is A–B
f -connected, i.e., z∗ is the maximizer in (4.22). Numerically, we check for z slightly
below the numerical value z∗l , and if for all tested z’s, they share exactly the same

N (z) and the set �
N (z)
z (A) ∩ B converges as z approaches z∗l , and then, it is reliable

to use the obtained numerical value z∗l as the competency of f defined in (4.22).

4.4 Dominant Transition Path and Dynamical Bottleneck

Calculating the Ai–B competency, z∗(Ai , B), suffices for quantifying the stochastic
instabilities of the periodic points. In the last part of this section, we further discuss
some additional issues about finding the A–B dominant transition paths since such
paths can give us more details and insights about transition mechanism, especially
how the periodic points compete in winning the global competency z∗.

First, we define a pullback operation.

Definition 7 Given z ≤ z∗ and n ≥ N (z), let

Wn,n
z := �n

z (A) ∩ B,

if this set is nonempty. And for 0 ≤ i < n, define

Wn,i
z := {x ∈ �i

z(A) : �z({x}) ∩ Wn,i+1
z �= ∅},

recursively.

For any ω = (ω0, ω1, . . . , ωn), define the canonical projection πi : ω �→ ωi . Then,
we have the following property about the above set Wn,i

z .

Proposition 1 For any z ∈ (0, z∗], n ≥ N (z), and 0 ≤ i ≤ n, then

Wn,i
z = πi (Gn(Lz)) ,

which is to say

(1) for any α ∈ Wn,i
z , there exists a transition path ω = (ω0, ω1, . . . , ωn) ∈ Gn(Lz)

with length n and ωi = α.
(2) for any ω = (ω0, ω1, . . . , ωn) ∈ Gn(Lz), ωi ∈ Wn,i

z for all 0 ≤ i ≤ n.

Proof (1): Pick up an arbitraryα inWn,i
z , letωi := α, then there exists a point, denoted

as ωi+1, in both �z({ωi }) and Wn,i+1
z . Since ωi+1 ∈ Wn,i+1

z , we can inductively
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find ω j ∈ Wn, j
z ∩ �z({ω j−1}) for i < j ≤ n; in particular, ωn ∈ Wn,n

z ⊂ B.
Meanwhile, since ωi ∈ �i

z(A), then there exists an ωi−1 such that ωi−1 ∈ �i−1
z (A)

and ωi ∈ �z({ωi−1}). From ωi−1 ∈ �i−1
z (A), we similarly have ω j ∈ �

j
z (A) and

ω j+1 ∈ �z({ω j }) for 0 ≤ j < i ; in particular, ω0 ∈ �0
z (A) = A. It turns out that

ω := (ω0, . . . , ωi , . . . , ωn) is the desired transition path.
(2): Let ω = (ω0, ω1, . . . , ωn) be a transition path in the set Lz . Then, ω0 ∈

A = �0
z (A). Note that f (ωi , ωi+1) ≥ z for all 0 ≤ i < n, then ωi+1 ∈ �z({ωi }).

In particular, ω1 ∈ �z({ω0}) ⊂ �1
z (A), and inductively, we have ωi ∈ �i

z(A) for
0 ≤ i ≤ n. Since ωn ∈ B, we have ωn ∈ Wn,n

z . Then, by induction again, we obtain
from the definition of Wn,i

z that ωi ∈ Wn,i
z for 0 ≤ i ≤ n. ��

Definition 8 A pair (x, y) ∈ D × D is called an A–B dynamical bottleneck, or
dynamical bottleneck for abbreviation, if f (x, y) = z∗ and (x, y) ∈ Wn,i

z∗ ×Wn,i+1
z∗

for some n ≥ N (z∗) and 0 ≤ i < n.

Proposition 2 (1) If (x, y) is a dynamical bottleneck, then there exists a dominant
transition path ω = (ω0, . . . , ωn) in G(Lz∗), such that x = ωi and y = ωi+1 for
some i (0 ≤ i < n).

(2) If for the given set A, B and the function f , the bottleneck is unique, and then,
every dominant transition path contains the bottleneck as one of its edges.

Proof (1) From the proof of Proposition 1, we see that if x ∈ Wn,i
z∗ , there must

exist an A-{x} transition path (ω0, ω1, . . . , ωi = x) with edges in Lz∗ , and if y ∈
Wn,i+1

z∗ , then there is a {y}-B transition path (ωi+1 = y, ωi+2, . . . , ωn) with edges
in Lz∗ . Since (x, y) ∈ Lz∗ , then putting together the above two pieces, we obtain
ω = (ω0, ω1, . . . , ωi = x, ωi+1 = y, ωi+2, . . . , ωn), which is a dominant transition
path.

(2) By Remark 6, for every dominant transition path ω = (ω0, ω1, . . . , ωn) in
G(Lz∗), we have Cp(ω) = mini f (ωi , ωi+1) = z∗. Let i∗ = argmini f (ωi , ωi+1),
then f (ωi∗ , ωi∗+1) = z∗. It follows from Proposition 1 that ωi∗ ∈ Wn,i∗

z∗ and ωi∗+1 ∈
Wn,i∗+1

z∗ . Hence, (ωi∗ , ωi∗+1) is a bottleneck by definition. Since the bottleneck is
unique, (ωi∗ , ωi∗+1) must be the bottleneck (x, y). ��

If the A–B dynamical bottleneck is unique, denoted as B(A, B) = (B−(A, B),

B
+(A, B)), then we can furthermore recursively investigate how the dominant tran-

sition paths leave the set A and reach the bottleneck B(A, B). For example, we can
define the bottleneck B(A, B

−(A, B)) for the transition from A to B
−(A, B), i.e.,

take B
−(A, B) as B ′. If this bottleneck is also unique, we can continue to trace the

nested bottlenecks B(A, B
−(A, · · · )) back to some point in the set A. The final point

obtained in this recursive way in the set A is just the MCPP we defined earlier.

4.5 Comments on Two Criteria of MPLP and MCPP

It is normal that our two criteria in Sects. 4.2 and 4.3 can give rise to different results in
describing the stochastic instabilities of the same periodic point. The first criterion of
looking forMPLP is to compare the total outflowof the reactive current from a periodic
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point. The second criterion of looking for MCPP is to compare the competency of the
“pipelines” from a periodic point in transporting the reactive current to the destination
B. In other words, the MPLP is for the collective behavior of all pipelines, while the
MCPP is about where the pipeline having the widest bottleneck lies. So, it is quite
reasonable that in certain cases, the total flow is huge but the competency of each
individual pipeline is actually small, or vice versa.

5 Application to the Random Logistic Map

We are now in position to apply the above two TPT-based methods to the logistic map
for the set A and B specified in Sect. 2. The first result is for a fixed value α = 3.2,
at which a stable period-2 orbit exists. We shall show the numeric values of the A–B
reactive probability current J and the analysis of the MPLP, MCPP and dominant
transition paths. Then, by changing various parameter α and the noise amplitude σ ,
we study how the results change. During the discussion, we also show some validation
work for the consistency with direct simulation and the robustness with respect to δa
and δb.

5.1 Results for the Period-2 Case

5.1.1 Basic Quantities

(1) invariant measure π : pick up α = 3.2 as an example. The stable period-2 orbit in
this case is ξ = (ξ1, ξ2) = (0.5130, 0.7995). The invariant measure π at σ = 0.04
is shown in Fig. 2a, where the two peaks correspond to the locations of ξ1 and ξ2. It
is seen that π(ξ1) < π(ξ2), which implies that the periodic point ξ2 on the right has
a higher equilibrium probability. The same result π(ξ1) < π(ξ2) for the two periodic

(a) (b)

Fig. 2 The invariant probability densityπ(x) for a the period-2 case andb the period-3 case. The parameters
are a α = 3.2, σ = 0.04, b α = 3.83, σ = 0.008
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(a) (b)

(c) (d)

Fig. 3 The logarithmic plots of the forward committor function (a, b) and backward committor function
(c, d). The parameters are α = 3.2, σ = 0.04, δa = δb = 0.02. a q+(x) from solving (4.6), b q+(x) from
direct simulation, c q−(x) from solving (4.7), d q−(x) from direct simulation

points ξ1 < ξ2 is observed for all values of α between [3.02, 3.40]. Actually, when α

increases in this interval, the ratio π(ξ2)/π(ξ1) also increases.
Figure 2b shows the invariant measure for a period-3 example at α = 3.83. The

period-3 orbit is ξ = (ξ1, ξ2, ξ3) = (0.1561, 0.5047, 0.9574). To manifest the three
peaks in the invariant measure for this periodic orbit, a smaller σ = 0.008 is used. It
is clear here that the peak at ξ3 = 0.9574 is dominantly large.

(2) Committor functions.Choose the sets A and B as specified in (2.4) and (2.5)with
δa = δb = 0.02. The forward/backward committor functions q+ and q− at σ = 0.04
(α = 3.2) are plotted in Fig. 3 at the logarithmic scale. The subplots (Fig. 3a, c) are
the solutions obtained from the finite difference scheme for Eqs. (4.6) and (4.7) with
a total 10000 mesh grid points. As a comparison, the same committor functions are
calculated from the statistical average of a long trajectory by brute-force simulation
of the random logistic mapping and they are shown in Fig. 3b, d. The total number
of simulation time steps is 2 × 1010 (i.e., N = 1010 in Eq. (4.14)), during which
the number of successful transitions from A to B is 12238. Thus, the transition rate
obtained from direct simulation is 6.119 × 10−7. The transition rate calculated from
the Eq. (4.14) is 6.008 × 10−7.

It should be emphasized that the committor functions are not continuous at the
boundary of the sets A and B. The forward committor function does not even change
monotonically from 1 to 0. These special features come from the nature of the discrete-
time map.
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(a) (b)

(c) (d)

Fig. 4 The plots of the transition kernel P(x, y), the PDF flux π(x)P(x, y) used in Billings et al. (2002)
and the A–B reactive current J (x, y) = π(x)P(x, y)q−(x)q+(y). For better visualization, the contour
plots for J in subplots (c) and (d) are actually for the value log(J (x, y)/M)where M = maxx,y∈S J (x, y).

The parameters are α = 3.2, σ = 0.04, δa = δb = 0.02. (M = 6.5186×10−4). a P(x, y), b π(x)P(x, y),
c J (x, y), d empirical J (x, y)

(3) A–B reactive current. Figure 4a shows the transition kernel P(x, y). Figure 4b
plots π(x)P(x, y), which is the so-called PDF flux in Billings et al. (2002). The A–B
reactive current in the TPT for our use, shown in Fig. 4c, was calculated fromEq. (4.10)
via solving Eqs. (4.9) and (4.6) by using the finite difference method. Figure 4d is the
empirical result from the direct simulation, which confirms that our calculation is
reliable.

5.1.2 Comparison of Stochastic Instability at α = 3.08

We fix σ = 0.04 for the following discussion about the transition mechanism at
α = 3.08. The period-2 orbit is ξ = (ξ1, ξ2) = (0.5696, 0.7551).

The first viewpoint, usingMPLP, is to compare the total current out of A : r−
AB(x) =∫

D J (x, y) dy for x ∈ A. The set A of concern is the union A1 ∪ A2, where Ai =
[ξi −δa, ξi +δa], i = 1, 2. The set B = [0, δb]∪[1−δb, 1]. Table 1 shows that δa , the
width of the set A, has little influence on the result of the transition rate κAB , and δb

123

Author's personal copy



778 J Nonlinear Sci (2016) 26:755–786

Table 1 Transition rate kAB for
different δa and δb

Here, α = 3.08, σ = 0.04

kAB δa = 0.01 δa = 0.015

δb = 0.01 4.6883 × 10−9 4.6883 × 10−9

δb = 0.015 7.6215 × 10−9 7.6215 × 10−9

Fig. 5 r−
AB (x) for x in the union of the sets A1 = [ξ1 − δa , ξ1 + δa ] (left) and A2 = [ξ2 − δa , ξ2 + δa ]

(right). ξ = (ξ1, ξ2) = (0.5696, 0.7551) is the period-2 orbit. α = 3.08. σ = 0.04. The solid lines
correspond to δa = 0.01, δb = 0.01; the dashed lines correspond to δa = 0.01, δb = 0.015; the dotted
lines correspond to δa = 0.015, δb = 0.01; the dash-dot lines correspond to δa = 0.015, δb = 0.015

has a slightly more significant influence on κAB . This observation is expected since the
set A is a small neighborhood of the linearly stable periodic orbit of the logistic map,
while B not. To test the impact on the MPLP, we plot in Fig. 5 the total current r−

AB(x)
for x ∈ A1 (left) and x ∈ A2 (right) for the different widths specified in Table 1. As
this figure shows, the window A2 containing the periodic point ξ2 carries 30–50%
more reaction current than the window A1, for various values of δa and δb. We also
tested this result of the MPLP by varying σ between 0.01 and 0.04 and reached the
same conclusion that the second periodic point ξ2 is the MPLP.

So, our technique based on the relative size of the total current out of the set A
robustly identifies the point ξ2 from the period-2 orbit (ξ1, ξ2) as the MPLP. In the
sense of the A–B transition events, we can claim that the point ξ2 is less stable, or
more active, under the randomperturbation.Note that in terms of the invariantmeasure,
π(ξ2) > π(ξ1). It is ξ1 that has a smaller equilibrium probability density.

In the following, we analyze the dynamical bottleneck and dominant transition
pathways for this period-2 case. We will restrict to those dominant transition paths
with the minimal path lengths N (z∗) to exclude the possible existence of loops. For
simplicity, we will omit N (z∗) in the notation WN (z∗),i

z∗ and write Wi
z∗ . We choose the

windowwidth δa = δb = 0.01. After building the effective reactive current J+(x, y) ,
we found that the A–B competency z∗ ≈ 1.98×10−6 by the binary search between 0
andM = maxD×D J+(x, y), and N (z∗) is equal to 2. Then, we look for the sequences
of the sets Wi

z∗ for i = 2, 1, 0, by using a number of pilot points to explore these sets.
The numerical result, up to the accuracy of 10−4, shows the following:
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W 2
z∗ = [0.9900, 0.9928] ⊂ B,

W 1
z∗ = {0.5331} ⊂ D\(A ∪ B),

W 0
z∗ = {0.7651} ⊂ A.

The A–B dynamical bottleneck B(A, B) is (0.7651, 0.5331). Let 0.5331 be the new
set A′ and search for the A′–B dynamical bottleneck. We obtain the second dynamical
bottleneck (0.5331, 0.9900). Finally, we get the dominant transition path

ϕ ≈ (0.7651, 0.5331, 0.9900), at σ = 0.04,

where the underlined values correspond to the positions of the dynamical bottlenecks.
This result of dominant transition path is unchanged when we changed the mesh grid
size between 1.7 × 10−4 and 3.4 × 10−4 in discretizing the space D = [0, 1]. We
also varied the width δa between 0.01 and 0.02 and obtained the same result for the
dominant transition path ϕ. The first point of the dominant transition path ϕ, i.e., the
point in W 0

z∗ , lies in the window A2 for the second periodic point ξ2. Thus, the A–B
competency is actually realized by the A2–B competency. So, we conclude that ξ2
is the MCPP. The A–B dominant transition path starts from a boundary point in A2,
followed by a jump to some point on the left but far away from ξ1 to escape the periodic
orbit, and finally jumps into the set B.

5.2 Bifurcation Diagram for the Period-2 Case

It is interesting to see how the above transition mechanisms (MPLP, MCPP, dominant
transition paths, etc.) change when the noise amplitude σ or the parameter α changes.
The following numerical results show bifurcations for varying parameters, and we
will see that the two criteria do not always give the same conclusion.

(a) (b)

Fig. 6 a
r−AB (i)

r−AB (1)+r−AB (2)
versus σ . b κAB versus 1/σ 2
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Fig. 7 The maximum competency periodic point

5.2.1 Change σ

We still fix α = 3.08, but now change the value of the noise amplitude σ between
0.01 and 0.04. The period-2 orbit is ξ = (ξ1, ξ2) = (0.5696, 0.7551).

Figure 6a plots the probability density at ξ1 and ξ2 of the last hitting distribution
of the transitions from A to B. It suggests that ξ2 always wins ξ1 as the MPLP for
σ ∈ (0.01, 0.04). The dependence of the transition rate κAB on the noise amplitude
σ , in Fig. 6b, shows an Arrhenius-like relation.

From the results, the first observation is that the minimal length of the dominant
transition paths, N (z∗), grows as σ decreases. For example, at σ = 0.02, the dominant
transition path is ϕ = (0.7651, 0.5269, 0.9743, 0.0100). At σ = 0.014, the dominant
transition path has minimal length 5:

ϕ = (0.5596, 0.7761, 0.5181, 0.9740, 0.0100).

At σ = 0.013, the dominant transition path has minimal length 6:

ϕ = (0.7643, 0.5508, 0.7818, 0.5118, 0.9740, 0.0100).

When σ varies, the MCPP selected from the periodic points ξ1 and ξ2 is plotted in
Fig. 7. This figure shows two critical values of σ : σ1 ≈ 0.0134 and σ2 ≈ 0.0185,
where MCPP switches between ξ1 and ξ2.

We demonstrate a more detailed analysis at the bifurcation point σ1 in Table 2 as
well as in Fig. 8. Table 2 compares the Ai–B dominant transition paths ϕi , i = 1, 2.
That is z∗(Ai , B) = Cp(ϕi ) for i = 1, 2. The A–B dominant transition path ϕ is
either ϕ1 or ϕ2, which has a larger competency. Keep in mind that the competency
of a given path (ϕ0, . . . , ϕN ) is calculated as the minimum of the effective currents
J+(ϕn, ϕn+1) at each edge (ϕn, ϕn+1), which is highlighted in bold font in Table 2.

To understand the bifurcation of the MCPP, we need to analyze the competition
of the two competencies z∗(A1, B) and z∗(A2, B), which are further determined by
the Ai–B dynamical bottlenecks B(Ai , B) on the Ai–B dominant transition paths
ϕi for i = 1, 2. The A1–B dynamical bottleneck is the first step of jump on ϕ1:
from the left boundary point of A1 to a point (located at 0.77–0.78) near the right
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Fig. 8 This figure visualizes (in form of cobweb plot) the dominant transition path in the contour plot
of log(J+/M) where M = maxx,y∈D J+(x, y) (α = 3.08, δa = δb = 0.01). Top σ = 0.013; Bottom
σ = 0.014. The six vertical and six horizontal straight lines (solid, blue) are the boundaries of A and B.
The red square-shaped dot and blue diamond-shaped dot represent the first and the last edges of the path,
respectively. The black round dots represent all the other edges

interval A2. The A2–B dynamical bottleneck is the second step in ϕ2: from a point
slightly the left side of the interval A1, to a point quite close to one point in the
A1–B dynamical bottleneck. For σ around the value σ1, both of the Ai–B, i = 1, 2,
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Fig. 9 The plot of
g(x)/g(ξ1 − δa) near A1 for the
four values of σ from 0.013 and
0.014. Note that g is not
continuous at the boundary
locations of A1:
ξ1 − δa = 0.5596 and
ξ1 + δa = 0.5796, two vertical
lines in this figure

dynamical bottlenecks are the jumps from a region near the left boundary of A1
(including A1’s left boundary), denoted as I1, to a region near the right boundary of
A2, denoted as I2. Setting I1 = [0.53, 0.59] and I2 = [0.7, 0.82], we investigate the
maximum reactive current for any given x ∈ I1: g(x) := maxy∈I2 J+(x, y) for x ∈ I1.
The maximizer of this function g, whether it is equal to the value at the left boundary
of A1 or not, will determine which one of ϕ1 and ϕ2 is the A–B dominant transition
path. By plotting the graph of the (rescaled) function g for several σ values around
the critical value σ1 in Fig. 9, we indeed find that it is the competition of two local
maximizers of g that leads to the bifurcation of the dominant transition path from ϕ2
to ϕ1 as σ increasingly passes σ1.

The bifurcation at the second critical value σ2 of the noise amplitude σ is also due
to the change in the MPCC and the dominant transition paths, via the competition of
the local maximum in the interiors and the values at the boundary points of A1 and
A2 for the function J+(x, y). The numerical evidences skipped.

Fig. 10 κAB versus α
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(a) (b)

Fig. 11 The MPLP and the MCPP for 3.02 ≤ α ≤ 3.40. σ = 0.02, δa = δb = 0.01. The horizontal
straight line in a indicates the threshold 0.5. The dashed curves in b represent the locations of the two
periodic points for each α. a r−

AB (i)/(r−
AB (1) + r−

AB (2)) versus α. b The MCPP

5.2.2 Change α

Whenα ∈ [3.02, 3.40], the only stable invariant set of the logisticmap is the period-
2 orbit. We are now interested in how the value of α influences the transition rate and
the roles of the individual periodic points. Fix σ = 0.02 and δa = δb = 0.01. Figure
10 shows that the transition rate κAB increases in α and this dependency is nearly
exponential. To identify the MPLP between the two periodic points ξ1 and ξ2 (ξ1 is
defined to be the smaller one), the probabilitymass r−

AB(i)/(r−
AB(1)+r−

AB(2)) is plotted
in Fig. 11a. As shown in this figure, ξ1 is the MPLP only when α is approximately
between 3.20 and 3.26. Figure 11b shows the MCPP in dark diamond-shaped dots for
each α. For the range of α, we investigated here, there are four critical values of α

where the MCPP switches between the two periodic points ξ1 and ξ2. As explained in
Sect. 4.5, the MPLP and MCPP can be different in Fig. 11a, b.

6 Discussion

In conclusion, in order to study the stochastic instability of linearly stable periodic
orbit from the perspective of noise-induced transitions, we have described the method
based on the transition path theory and illustrated the example of the randomly per-
turbed logistic map. The introduced concepts of most-probable-last-passage point and
the maximum competency point are novel descriptions of the stochastic instability for
linearly stable periodic points. We demonstrated the capability of these two proposed
perspectives to quantify the stochastic instabilities of the individual periodic point in
one periodic orbit. It should be noted that although only the case of period-2 was ana-
lyzed here, our method can also be applied to other types of set A with more complex
structures. In fact, our approach based on the transition path theory is generic to any
ergodic stochastic dynamical systems, such as the multiplicative random perturba-
tions, and to the arbitrary nonintersecting closed subsets A and B, such as the stable
limit cycles in continuous-time dynamical systems.
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