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SENSITIVITY ANALYSIS AND OPTIMIZATION OF
REACTION RATE∗

SHUTING GU† , LING LIN‡ , AND XIANG ZHOU§

Abstract. The chemical reaction rate from reactant to product depends on the geometry of
potential energy surface (PES) as well as the temperature. We consider a design problem of how
to choose the best PES from a given family of smooth potential functions in order to maximize (or
minimize) the reaction rate for a given chemical reaction. By utilizing the transition-path theory,
we relate reaction rate to committor functions which solves boundary-value elliptic problems, and
perform the sensitivity analysis of the underlying elliptic equations via adjoint approach. We derive
the derivative of the reaction rate with respect to the potential function. The shape derivative with
respect to the domains defining reactant and product is also investigated. The numerical optimization
method based on the gradient is applied for two simple numerical examples to demonstrate the feasibility
of our approach.
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1. Introduction
The understanding of rare events is one of the most fundamental problems in chem-

istry. The typical examples of rare events are chemical reactions, conformation changes
of molecules and so on. A chemical reaction is conveniently discussed in terms of a re-
action energy profile [1–3]. For systems with smooth energy landscapes, the well-known
transition state theory [4–6] or Kramers rate theory [2] gives a sufficiently accurate de-
scription of the transition process and the corresponding chemical reaction rate. The
main object of interest in these theories is transition state, which is saddle point on
potential energy landscape. The transition rate is related to the energy barrier in the
form of Arrhenius law, which works asymptotically well on smooth potential and at low
temperature.

Recently, the transition-path theory (TPT) has been developed in [7] to better
address the challenges in systems with rugged potential energy landscapes, or when
entropic effects matter. See also [8–10] and the review in [11]. As a theoretical tool for
analyzing the transition-path ensemble (in practice, these paths are usually collected
from the transition path sampling (TPS) technique [12]) or other methods), the TPT
not only characterizes the probability distribution of the particles in the transition-path
ensemble and the associated probability current, but also provides an exact formula
for transition rate, regardless of the complexity of reaction energy profile. The TPT-
rate is given by the committor functions, which are also referred to as capacitance
functions [13,14], with a clear probability meaning of heading toward the product state
before returning to the reactant state. The committor function satisfies a boundary-
value problem for an elliptic partial differential equation.
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Since the various tools for calculating the reaction rate have been developed, it would
be convenient in practice to explore different structures or morphologies of molecules
so that the control of the reaction rate can be achieved to design better chemical prod-
ucts. One main approach is to test many possibilities of the underlying potential energy
surface and select the desired one by optimization. The basic task to perform such
optimization procedures is to determine the sensitivity of the rate with respect to the
perturbation of the current potential energy, i.e., to calculate the “derivative” of the
objective function — the reaction rate — with respect to the free parameters which can
be tuned in a family of potential surfaces. This paper serves a mathematical derivation
of the sensitivity analysis when the potential function and/or the domain of states are
perturbed. Then based on the derivative information, we apply it to the optimization
problems of maximizing or minimizing the rate. Mathematically, we work on the sen-
sitivity analysis of the elliptic PDE with respect to the coefficients and the domain by
the adjoint method.

The adjoint approach for sensitivity analysis was carried out for a Fokker–Planck
equation in a climate model in [15]. Our methods share some elementary common things
with this work since the adjoint idea is the standard approach for sensitivity analysis, but
our problems for the reaction rate have different setup of the boundary-value problems
and have more complicated objective functionals. Moreover, more advanced mathemat-
ical generalizations are involved here; for example, the use of variational structure of our
problem (i.e., detailed balance) significantly simplifies some calculations. Furthermore,
our calculations include the shape derivative by using the technique in [16], which helps
evaluate the proper size of the domains defining the product or reactant states. This is
the first time, to the best knowledge of the authors, to consider the effect of the defining
domains for reactant and product on the evaluation of reaction rate. In real applica-
tion problems, there might be different type of kinetic measurements which define the
product and reactant states differently, then the shape derivative of the reaction rate
provides a useful criterion to determine which definitions of the product and reactant
states are most appropriate. The key element in our final result is a mean first passage
time of hitting either the reactant state or the product state (see Equation (3.9)).

In the end, we want to remark that we are allowed to change the potential function
itself rather than its gradient force. In some areas such as the large deviation or impor-
tance sampling, the controlled process for the underlying stochastic differential equation
(SDE) corresponds to an extra drift term (cf. [17–19]); when this drift term is driven as
the gradient of another function (such as value function or quasi-potential, which is quite
common in many cases), then there is an analogy between our problem in this paper
and those works. In those works, the drift is being changed via an absolutely continuous
change of measure with the goal of simulating the system under a different measure.
The goal of those papers is to minimize the variance of the importance sampling Monte
Carlo method by picking up the optimal drift, which is usually approximated in the
large deviation asymptotic region via Hamilton–Jacobi–Bell equation. Our analysis in
this paper is entirely based on the elliptic PDE in the non-asymptotic region and would
help solve these problems in a different perspective, beyond the contribution to the
optimization of the reaction rate.

The paper is organized as follows. In Section 2, we introduce the TPT and the
definitions and calculations of two rates defined in the TPT. Section 3 is our main result
about the sensitivity analysis. Section 4 presents two numerical examples. Section 5
contains our concluding discussion.
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2. Reaction rate and transition path theory
We consider the following diffusion process Xt defined by an overdamped Langevin

equation1 in Rn associated with a potential function U ,

dXt=−∇U(Xt)dt+
√

2εdW, (2.1)

where W is the standard Brownian motion in Rn and ε=kBT is the thermal noise
amplitude. The infinitesimal generator of this diffusion process is

Lf =−∇U ·∇f+ε∆f,

and the formal adjoint of L is

L∗f =∇·(∇Uf)+ε∆f.

The equilibrium probability density function (pdf) of equation (2.1) is given by

ρ(x) =Z−1e−U(x)/ε, where Z=

∫
e−U(x)/εdx.

As a convention, the integral domain is Rn if not specified. This pdf ρ is the unique
solution to the Fokker–Planck equation

L∗ρ=∇·(ρ∇U)+ε∆ρ= 0 (2.2)

satisfying the normalization condition∫
ρ(x) dx= 1. (2.3)

It is worthwhile noting that L has the following divergence form with the aid of ρ,

Lf =−∇U ·∇f+ε∆f =
ε

ρ
∇·(ρ∇f). (2.4)

Let A and B be two disjoint closed domains (with piecewise continuous boundaries)
in Rn and they represent the reactant and the product, respectively, in a chemical
reaction of concern. Denote the set D=Rn \(A∪B) or (A∪B)c.

The transition rate between A and B in the TPT is defined as the number of
transition events from the reactant set A to the product set B in unit time and is
calculated as follows via the ergodicity property (see [11]),

ν=ε

∫
D

ρ(x)|∇q(x)|2 dx, (2.5)

where the comittor function q is the solution to the following boundary-value problem
on D {

Lq= 0, x∈D,
q|A= 0, q|B = 1.

(2.6)

1 The underdamped Langevin dynamics can also be studied by the TPT. If one assumes the
committor function q(x,p) can be represented by a function of the positions q(x) only, then the problem
exactly reduces to the overdamped case. See Section 3.5 in [11] for details.
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The above rate ν should not be confused with the two reaction rates from A to
B and B to A defined, respectively, as κA,B =ν/mA and κB,A=ν/mB where mA=∫
ρ(x)(1−q(x)) dx= 1−

∫
ρ(x)q(x) dx and mB =

∫
ρ(x)q(x) dx. The meanings of mA

and mB are the time fractions during which a generic reactive trajectory was assigned
to A or B( [11]). The rates κA,B and κB,A are the phenomenological chemical reaction
rates for the reaction direction from A to B, and from B to A, respectively. We call
κA,B the A-B reaction rate and κB,A the B-A reaction rate.

For the given sets A and B, we only need consider A-B reaction rate κA,B mathe-
matically since κB,A can be done in exactly the same way. So, to be concrete, we only
study κA,B and denote it simply as κ throughout the paper. Thus, the rate of our main
interest is κ, defined as

κ=
ν

m
, (2.7)

where

m=

∫
ρ(x)(1−q(x)) dx= 1−

∫
ρ(x)q(x) dx. (2.8)

We shall use the notation ν[U,A,B] later (similarly κ[U,A,B], m[U,A,B], etc.) to
emphasise the dependence on the potential U or the sets A and B.

3. Sensitivity analysis
The question of interest is how to tune the potential function U in certain given

range to optimize the A-B reaction rate κ. To achieve this goal, we first need to calculate
the Fréchet derivative of the reaction rate κ with respect to the potential function U for
the fixed domains A and B. In the following, we use κ[U ] to emphesize the dependence
on the function U , i.e., we regard κ as a functional of U . Denote the L2 inner product
in Rn by 〈·,·〉. Assume that the admissible set of the potential U is U. For example, U is
the set of all C1 functions on Rn with a lower bound and grows to infinity sufficiently fast
when |x|→∞. For such potentials, the density ρ=Z−1e−U/ε then belongs to L1(Rn)
to make sense. For specific applications, the admissible set U may contain some extra
constraints from physical reality. We assume all potential functions U in consideration
belong to U. We first have the following Fréchet derivative for the equilibrium pdf ρ.

Lemma 3.1. Given a function f on Rn such that

F (U) := 〈f,ρ[U ]〉<∞, where ρ[U ] =e−U/ε/(

∫
e−U/εdx),

then

δF

δU
=ε−1(F −f)ρ. (3.1)

Proof. Denote the infinitesimal change of U by Ũ and the infinitesimal perturba-
tion of the equilibrium measure ρ by ρ̃. Then δF = 〈f,ρ̃〉. We first linearize the elliptic
Equation (2.2) by expanding

L∗[U+ Ũ ](ρ+ ρ̃) =∇·
(

(∇U+∇Ũ)(ρ+ ρ̃)
)

+ε∆(ρ+ ρ̃) = 0

and neglecting the high order term ∇·(ρ̃∇Ũ), and then after reduction we get

∇·
(
ρ∇Ũ

)
+L∗ρ̃= 0,
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where L∗ is associated with U . Now multiply the above by a smooth function g which
decays sufficiently fast at infinity (g and ∇g vanishes at infinity), and integrate by parts
twice, then we have that 〈

∇·(ρ∇g),Ũ
〉

+〈Lg,ρ̃〉= 0.

By the equivalent form of L in equation (2.4), the above equation leads to〈
Lg,ρŨ

〉
/ε+〈Lg,ρ̃〉= 0. (3.2)

By choosing the function g such that

〈ρ̃,f−Lg〉= 0 (3.3)

holds for all ρ̃ satisfying the constraints
∫
ρ̃dx= 0, we then have an equation for g:

f−Lg= c, (3.4)

where c is a constant. Then, by equations (3.2),(3.3) and (3.4), it holds that

δF =〈f,ρ̃〉−0 = 〈ρ̃,f−Lg〉−
〈
Lg,ρŨ

〉
/ε

=−
〈
Lg,ρŨ

〉
/ε=

〈
ρ(c−f),Ũ

〉
/ε. (3.5)

The constant c is actually equal to F since multiplying equation (3.4) by ρ and integra-
tion by parts show that

F = 〈f,ρ〉= c+〈L∗ρ,g〉= c.

So, we showed that

δF =
〈
ρ(F −f)/ε,Ũ

〉
. (3.6)

Our main result is the following theorem.

Theorem 3.1. The Fréchet derivative of ν is

δν

δU
=ρ(ν/ε−|∇q|2). (3.7)

The Fréchet derivativeof m is

δm

δU
=
ρ

ε
(q+m−1)−ρ(∇q ·∇w), (3.8)

where w :D→R is the solution of the equation{
Lw=−1, x∈D,
w|∂D = 0.

(3.9)

It follows that the Fréchet derivative of κ is

δκ

δU
=

1

m2

(
m
δν

δU
−ν δm

δU

)
=
ρ

m

(
κ(1−q)/ε+κ∇q ·∇w−|∇q|2

)
. (3.10)
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Remark 3.1. The probabilistic interpretation of w(x) is the mean first passage of
entering the domain A∪B of the diffusion process (2.1) for X0 =x∈D. If A and B
are two wells of the potential energy surface U , this function w(x) is much less than
the transition time between two wells A and B. This means the direct stochastic
simulation of the mean first passage time w is much faster than the direct simulation of
A-B transition.

Remark 3.2. From the proof of this theorem, one can easily verify that
∫
Rn

δκ
δU dx= 0

with the Fréchet derivative given in equation (3.10). So any perturbation in the form
of U(x)→U(x)+c for a constant c leads to no change of κ.

Remark 3.3. Equation (3.10) shows that, since ∇q≡0 on A∪B , δκ
δU vanishes inside

B and equals to κρ
εm inside A. Note that κρ

εm is always positive, then it implies that just
increasing U inside of the set A always increases κ.

Remark 3.4. There is no guarantee that ∇q or ∇w is continuous on the boundary
∂D=∂A∪∂B.

Proof. (Proof of Theorem 3.1.) Denote the infinitesimal perturbation of the
equilibrium measure ρ by ρ̃ and the infinitesimal perturbation of the committor function
q by q̃, respectively. Then from equation (2.5),

δν= δν1 +δν2 :=

∫
ερ̃|∇q|2dx+2

∫
ερ∇q ·∇q̃dx.

The first term δν1 is given by Lemma 3.1 by letting f =ε|∇q|2. To prove the equality
(3.7), it suffices to show that δν2 := 2ε

∫
ρ∇q ·∇q̃dx actually vanishes. This is from the

fact that the committor function q minimizes the functional
∫
ρ|∇q|2dx (see [11]). For

any test function φ vanishing on ∂D, 〈ρ∇q,∇φ〉= 0 holds for the minimizer q. The
choice of φ= q̃ gives the conclusion δν2

δU = 0.
Next we prove the equality (3.8). By the definition of m in equation (2.8), we write

δm= δm1 +δm2 :=−
∫
qρ̃dx−

∫
D

ρq̃ dx.

Applying Lemma (3.1) with f =−q gives that

δm1 =ε−1
〈
ρ(q+m−1),Ũ

〉
.

For δm2, linearizing L[U+ Ũ ](q+ q̃) = 0 gives

Lq̃=∇q ·∇Ũ .

By equation (2.4) and Lq= 0, then we can calculate that

ρLq̃=ρ∇q ·∇Ũ =∇·(Ũρ∇q)− Ũ∇·(ρ∇q) =∇·(Ũρ∇q). (3.11)

From this result and noting that Lw= ε
ρ∇·(ρ∇w) =−1, i.e., −ρ=ε∇·(ρ∇w), as well

as the boundary conditions of w, we obtain

δm2 =−
∫
D

q̃ρdx=

∫
D

εq̃∇·(ρ∇w) dx

=ε

∫
D

w∇·(ρ∇q̃) dx (integration by parts)
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=

∫
D

wρLq̃dx

=

∫
D

w∇·(Ũρ∇q)dx ∵ (3.11)

=−
∫
D

Ũρ∇q ·∇w dx. (3.12)

Therefore, the Fréchet derivative of m in (3.8) holds. The result (3.10) is a trivial
calculation based on the Fréchet derivatives (3.7) and (3.8).

A corollary of Theorem 3.1 is on the derivative of the reaction rate κ with respect
to the noise amplitude ε.

Corollary 3.1.

∂κ

∂ε
=ε−1κ−

〈 ρ
m

(
ε−2κ(1−q)+ε−1κ∇q ·∇w−ε−1|∇q|2

)
,U
〉
. (3.13)

Here all functions are associated with the potential U and the noise amplitude ε.

Proof. Now we write ρ=ρ[U,ε], q= q[U,ε] and w=w[U,ε] to denote the dependence
on both the potential U and the noise size ε. The key observations are the following
simple scaling relations: ρ[U,ε] =ρ[U/ε,1], q[U,ε] = q[U/ε,1]. Then it follows that the
same scaling holds for ν/ε, m and consequently, κ[U,ε] =εκ[U/ε,1]. Denote the Fréchet
derivative in (3.10) by g[U,ε] to avoid confusion. Then, the derivative in (3.13) is

∂κ[U,ε]

∂ε
=κ[U/ε,1]+ε

∂κ[U/ε,1]

∂ε
=
κ[U,ε]

ε
−ε−1 〈g[U/ε,1],U〉 .

Since w[U/ε,1] =εw[U,ε], then the result (3.13) follows immediately.

The next theorem is the sensitivity analysis including the shape derivative of the
reaction rate with respect to the perturbation of the domain. This result is useful to
determine if the choice of A and B is appropriate: a too large shape derivative implies
a bad choice of these sets to represent the reactant and product states. The proof of
this Theorem 3.2 is more technical than the proof of Theorem 3.1, so we place it in the
Appendix.

Theorem 3.2. Let U be infinitesimally perturbed as U ′=U+ Ũ , where |Ũ |�1. For
Ω =A, B, or D, denote the perturbed domains by Ω′ and we define δΩ to be the sym-
metric difference Ω′4Ω = (Ω′ \Ω)∪(Ω\Ω′). Let n(x) be the outer normal unit vector
(for the domain D) at x∈∂D. We represent the infinitesimal perturbation of the bound-
ary ∂D by an infinitesimal function α(x) defined on the boundary ∂D as follows: any
x∈∂D is transformed to the new point x′ on ∂D′, defined as x′=x+α(x)n(x). See
Figure 3.1.

Then the infinitesimal perturbation of the rate κ, δκ[U,A,B] :=κ[U ′,A′,B′]−
κ[U,A,B] has the following expression

δκ=
〈 ρ
m

(
κ(1−q)/ε+κ∇q ·∇w−|∇q|2

)
,Ũ
〉

+
〈ερ
m

(
κ∇q ·∇w−|∇q|2

)
,α
〉
∂D

(3.14)

where 〈·, ·〉∂D means the boundary integration on ∂D.

Remark 3.5. By the strong maximum principle and the Hopf Lemma, it is true that

∂w

∂n
<0 on ∂D.
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Fig. 3.1. Illustration of the perturbation of the domain D. The solid and dashed curves are
the boundaries of the original domain D and the perturbed domain D′ respectively. n(x) is the outer
normal unit vector on the boundary of D at x∈∂D. The infinitesimal perturbation is specified by the
mapping x∈∂D→x′∈∂D′ in which x′=x+α(x)n(x). For the point x plotted in the above figure for
illustration, which belongs to (∂D)\D′, the sign of α(x) is negative.

Note that n‖∇q and their directions are opposite on ∂A and the same on ∂B. Thus

∇q ·∇w=±|∇q| ∂w
∂n

on ∂D (3.15)

with the minus sign on ∂A and the plus sign on ∂B. So the variation corresponding to
the change of B

ε
ρ

m

(
κ|∇q| ∂w

∂n
−|∇q|2

)
is always negative. This means that increasing the set B (leading to shrinking D and
α<0 on ∂B) will always increase κ.

4. Numerical methods and examples
Assume that the family of the potential functions can be parametrized as U(x;a)

where a= (a1,a2,·· · ,ap) is the parameter in Rp. Then the infinitesimal perturbation of
U is

δU =∇aU(x,a) ·δa

and it follows that

δκ=

∫
D∪A

δκ

δU
(x)∇aU(x,a) ·δadx=

∫
D∪A

δκ

δU
(x)∇aU(x,a)dx ·δa.

The function δκ
δU (x) is given in equation (3.10). The integral domain here is D∪A=Bc

due to Remark 3.3. Thus, the gradient of κ with respect to the parameter a is

∇aκ(a) =

∫
D∪A

δκ

δU
(x)∇aU(x,a)dx, (4.1)

i.e.,

∂κ(a)

∂aj
=

∫
D∪A

δκ

δU
(x)

∂U(x;a)

∂aj
dx.
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In many cases, the numerical value of κ is too small so it is beneficial to work on
log(κ). Then

∂ logκ(a)

∂aj
=

∫
D∪A

1

κ

δκ

δU
(x)

∂U(x;a)

∂aj
dx,

where

1

κ

δκ

δU
=
ρ

m

(
1−q
ε

+∇q ·∇w
)
− ρ
ν
|∇q|2 .

And also,

∂ logκ(a,ε)

∂ε
=ε−1−

〈 ρ
m

(
ε−2(1−q)+ε−1∇q ·∇w

)
− ρ
ν
ε−1|∇q|2,U

〉
.

Here ν=κm is used.
The design problem is an optimization problem of minκ(a) or maxκ(a) subject to

certain constraints. For example, the constraint ‖U(x;a)−U(x;a0)‖≤ c for a thresh-
old c corresponds to the penalty of changing the potential energy surface away from a
particular surface at a0. Based on the result (4.1), any gradient-based numerical opti-
mization method can be used to solve this design problem. In the next, we present two
examples to show how this method works.

4.1. 1D double-well potential perturbed by periodic field. We con-
sider the following superposition of the well-known double-well potential function and
a periodic potential from a given family parametrized by the parameter a:

U(x;a) =U0(x)+U1(x;a) :=
1

4
(x2−1)2 +

2

5
(1+sin(a1x−a2)).

The parametrized periodic potential is applied on the system as an external field. The
parameter is a= (a1,a2) where a1>0 is the frequency and a2 is the phase. Since the two
local minima of the double-well potential U0 is at±1, we then fix the set A= (−∞,−0.85]
and B= [0.85,∞) to represent the reactant and product states, respectively. So the
domain D= (−0.85,0.85). Set ε= 0.03. We want to maximize the A-B reaction rate κ.

The elliptic PDEs for q and w were solved on D by the finite difference scheme.
The differentiation (4.1) was calculated by the standard numerical quadrature from
the numerical values of ∇q and ∇w. We use the MATLAB routine fmincon as our
numerical solver for the optimization and find the optimal a∗= (1.643,2.521). In the
left panel of Figure 4.1, the search path from an initial guess is shown with the contour
plot of the objective function κ(a) as a function of a= (a1,a2). The right panel of Figure
4.1 shows how the original symmetric potential U0 is changed by adding the optimal
periodic U1(x;a∗). The half period at the optimal solution is π/a∗1≈2, roughly equal to
the distance between the two wells located at ±1.

Figure 4.2 shows the partial derivatives of κ(a) with respect to a1 for a2 =a∗2 = 2.521
and to a2 for a1 =a∗1 = 1.643. The optimal a∗= (1.643,2.521) is confirmed furthermore
clearly by this figure that the partial derivatives ∂κ/∂ai are positive for ai<a

∗
i and

negative for ai>a
∗
i , i= 1,2. Figure 4.3 shows the partial derivative of logκ(a,ε) with

respect to ε at the optimal a∗= (1.643,2.521). It is observed that ∂ logκ/∂ε is always
positive, therefore the rate κ is an increasing function of the noise amplitude ε, as we
expected. Figure 4.4 shows the result if the problem is to maximize the transition rate
ν. It is observed that the optimal profile of the potential function has a flat region
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Fig. 4.2. left: The partial derivative of κ(a) with respect to a1 for a2 =a∗2 = 2.521 and ε= 0.03.
right: The partial derivative of κ(a) with respect to a2 for a1 =a∗1 = 1.643 and ε= 0.03.
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Fig. 4.3. The partial derivative of logκ(a,ε) with respect to ε for the optimal a∗= (1.643,2.521).

between two original local minima. This is different from the result for optimal κ,
where the optimal profile is tilted from double wells to nearly one well. Given that the
difference between κ and ν is due to m, the time fraction that the system is in the
well A, these numerical results are what we expected since the titled potential will also
decrease m to increase κ.

The shape derivative calculated from the formula in Theorem 3.2 is validated by
comparing with the numerical results from the finite difference scheme. In Figure 4.5,
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Fig. 4.4. The optimal profile which maximizes the transition rate ν. The optimal solution is
a= (1.398,1.571).
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Fig. 4.5. The relative perturbation δκ/κ for D= [−d1,d2] at d2 =d1 =d when d is varied from 0.1
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κ
∂κ
∂d1

and the right

panel shows 1
κ
∂κ
∂d2

. The solid curves are for ε= 0.03 and the dashed are for ε= 0.06.

we show the shape derivative for the double well U0 by setting the domain D= (−d1,d2),
i.e., A= (−∞,−d1] and B= [d2,+∞). Then the relative changes, 1

κ
∂κ
∂di

for i= 1,2 are
calculated and plotted. Figure 4.5 shows that the smaller the distance of the domain
boundary to the transition state (x= 0), the more sensitive the reaction rate with respect
to the domain. In addition, the smaller noise amplitude ε shows a less sensitivity. This
observation is consistent with the fact in the vanishing noise limit, the reactant set A
can be safely defined as the whole well except a boundary layer near separatrix with
width O(

√
ε). If we use the criteria that the size of the relative change 1

κ
∂κ
∂d1

should be
less than 1 to determine the domain A, we could choose A= (−∞,−0.25) for ε= 0.03
and A= (−∞,−0.30) for ε= 0.06 to ensure that the change of A would not significantly
affect the reaction rate.

4.2. Müller potential. We consider the following two-dimensional energy
potential surface

U(x,y) =U0(x,y)+h

M∑
i=1

exp

(
− 1

2l2
(
(x−xi)2 +(y−yi)2

))
, (4.2)

where U0 is the Müller potential [20] multiplied by 5×10−3. The potential is perturbed
by M Gaussian modes with centers (xi,yi). We fix h= 0.25 and l= 0.25 first. Then
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when (x1,y1) is at the optimal center (0.260,0.217) (left) and the case M = 2 at the optimal centers
(0.231,0.284) and (0.000,0.237) (right). The other parameters are fixed at ε= 0.25 and l= 0.25.
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and (0.000,0.237). The other parameters are fixed at h= l= 0.25.
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Fig. 4.10. The values (top row) and the partial derivatives (bottom row) of κ with respect to the
parameter l for the case M = 1 (left column) with the center (0.260,0.217) and the case M = 2 (right
column) with the optimal centers (0.231,0.284) and (0.000,0.237). The other parameters are fixed at
ε= 0.25 and h= 0.25.

the only free parameters to tune are (xi,yi). Our goal is to minimize the A-B reaction
rate κ. Here the set A is a ball with radius 0.2 and its center is a local minimum at
(−0.558,1.442); the set B is another ball with the same radius and its center is another
local minimum at (0.624,0.028).

The numerical results shown below are for M = 1 and M = 2. For M = 1, the
two-dimensional parameter a= (x1,y1). We restrict a inside a box B1 = [−0.1,0.4]×
[0.1,0.5] where one saddle point lies. For M = 2, the four-dimensional parameter
a= (x1,y1,x2,y2). The first center (x1,y1) is inside the box B1 and the second center
(x2,y2) is inside the box B2 = [−1,0]× [0,0.8]. Refer to Figure 4.6 for the two rectangles
B1 and B2. The noise size ε is 0.25 in this example. The elliptic PDEs for the functions
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q and w are solved on a truncated domain which is sufficiently large (at ε= 0.25 used
here, the domain is a square with side size 7×7). When there is no perturbation and
only the Müller potential U0 is applied, the reaction rate κ0 = 0.046. We find that for
the case M = 1, the optimal center is unique and is equal to (0.260,0.217) with the min-
imum value κ∗= 0.036; for the case M = 2, after trying different initial data for (x2,y2)
the optimal pair centers are (0.231,0.284) and (0.000,0.237) with κ∗= 0.030. For this
example with the given setting of two constraint boxes, our findings of the minimizers
are unique for both M = 1 and M = 2. It was observed that the second optimal center
(x2,y2) in B2 is still close to the saddle point on the right, even for initial guesses chosen
near the saddle point on the left or the intermediate local minimum in the middle part.
This might be due to the higher energy barrier associated with the saddle point on the
right.

The optimal center (x∗1,y
∗
1) = (0.260,0.217) for the case M = 1 is confirmed again

by Figure 4.7, which shows the partial derivatives of κ for x1 and y1, respectively,
at ε= 0.25. To better understand the effects of other parameters in this toy model,
the partial derivatives of κ or logκ with respect to the three parameters h, ε and l
are plotted respectively in Figures 4.8, 4.9 and 4.10 , for the both cases of M = 1,2
with (xi,yi) fixed at the optimal center(s). The effects of h and ε on the rate κ are
transparent from the figures: the increasing strength h of the Gaussian-peak potential
makes the transition more difficult and a higher temperature ε certainly increases the
reaction rate. So, the derivatives for h and ε in Figures 4.8 and 4.9 are negative and
positive, respectively. Figure 4.10 of the derivative for l, the width of the peak, is quite
interesting: there is a minimal value of κ at l= l∗≈0.73. See the bottom row of this
figure, and this critical l∗ is also confirmed by the plot of the derivative in the top row.
When l< l∗, a wider peak gives smaller reaction rate, which shows more wide coverage
of the Gaussian mode to fill the saddle region. However, for the sufficiently large l> l∗,
the Gaussian modes are too flat and global, which might also affect the wells with lower
energy to partially generate an opposite effect from the l< l∗ case.

5. Conclusion

By using the transition path theory to describe the reaction rate, and using an ad-
joint method for boundary-value elliptic problems, we have derived the Fréchet deriva-
tive of the rates with respect to the potential surface by introducing the adjoint equa-
tion related to the first passage time. The shape derivative for the domains defining
the product and reactant is also derived and it requires the same auxiliary equation.
These formulae of sensitivity analysis are useful to tune the free parameters of the po-
tential surface to optimize the desired rate. One and two dimensional examples have
been presented to show the success of this approach. To apply this method to high
dimensional problems, the numerical difficulty arises since it is impossible to solve the
corresponding PDEs in high dimension. The possible method for improvement could be
to consider the random-walk interpretation for these elliptic PDEs, or to use dimension
reduction technique by restricting the solution supported on a tube for certain prob-
lems. For a general SDE which may lack of potential energy (without detailed balance)
and involve the state-dependent diffusion term, the main strategies in the current work
can be generalized in principle to such non-gradient systems.

Appendix A. Proof of Theorem 3.2.

Proof. It should be noted that ∇q may have a jump discontinuity on the boundary
∂D. ∇q(x) is trivially equal to zero from the outside of D from its boundary condition
of (2.6). We will refer to ∇q on the boundary ∂D as the limits from inside of D.
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For the perturbed quantities, we write ρ′=ρ[U ′], q′= q[U ′,A′,B′], κ′=κ[U ′,A′,B],
m′=m[U ′,A′,B′] and ν′=ν[U ′,A′,B′] to denote the dependency on the coefficient func-
tion U ′ and the domains A′, B′. D′= (A′∪B′)c. Then

κ′−κ=κ[U ′,A′,B′]−κ[U,A,B] =
ν′

m′
− ν

m

=
ν′−ν
m

+
ν′(m−m′)

m′m

' ν
′−ν
m

+
ν

m2
(m−m′). (A.1)

The symbol “'” means that the difference of two sides is at the order of o(Ũ) or o(α)

where Ũ is the infinitesimal perturbation of the function U and α is the infinitesimal
perturbation of the domain D. The discontinuities of ∇q′ on ∂D′ and ∇q and ∂D
imply that the derivative difference, ∇q′−∇q, may not be the first-order infinitesimal
perturbation on δD.

To ease the presentation, we summarize the following obvious fact in the lemma
below, which will be used repeatedly later.

Lemma A.1. Suppose that ω= 0 on Dc and ω′= 0 on D′c. Also assume the difference
ω′−ω is of the order o(1) on D∩D′. Then∫

ω′Ũ dx=

∫
D′
ω′Ũ dx'

∫
D′∩D

ω′Ũ dx'
∫
D∩D′

ωŨ dx'
∫
D

ωŨ dx=

∫
ωŨ dx, (A.2)

where Ũ is defined as above.

Now we first compute

ν′−ν=ν[U ′,A′,B′]−ν[U,A,B]

=(ν[U ′,A′,B′]−ν[U,A′,B′])+(ν[U,A′,B′]−ν[U,A,B]). (A.3)

For the first part on the above RHS, by equations (3.7) and (A.2), we have that

ν[U ′,A′,B′]−ν[U,A′,B′]

'
∫

δν

δU
[U,A′,B′]Ũ dx=

∫
ρ′(ν′/ε−|∇q′|2)Ũ dx

'
∫
ρ(ν/ε−|∇q|2)Ũ dx. (A.4)

For the term ν[U,A′,B′]−ν[U,A,B] involving shape derivative, we carry out the follow-
ing steps. Set q∗= q[U,A′,B′] and q̂= q∗−q. Define q† on δD= (D\D′)∪(D′ \D) as
follows: q† is equal to q on D\D′ and q∗ on D′ \D. Then,

ν[U,A′,B′]−ν[U,A,B] =

∫
D′
ερ|∇q∗|2 dx−

∫
D

ερ|∇q|2 dx

=

∫
δD

ερ|∇q†|2 dx+

∫
D∩D′

ερ
(
|∇q∗|2−|∇q|2

)
dx, (A.5)

where the integrand on δD is taken with a plus sign over D′ \D (where α(x)>0) and
a minus sign over D\D′ (where α(x)<0). Refer to Figure 3.1 for illustration. Since α
is small, from the mean value theorem, we obtain∫

δD

ρ|∇q†|2 dx=

∫
D′\D

ρ|∇q∗|2 dx−
∫
D\D′

ρ|∇q|2 dx
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'
∫
(∂D)∩D′

αρ|∇q∗|2 dσ∂D+

∫
(∂D)\D′

αρ|∇q|2 dσ∂D

'
∫
∂D

αρ|∇q|2 dσ∂D. (A.6)

For the second term of RHS in (A.5), since ∇q∗ and ∇q, are continuous in the closure
of D∩D′ , we then have∫

D∩D′
ρ
(
|∇q∗|2−|∇q|2

)
dx'2

∫
D∩D′

ρ∇q ·∇q̂ dx

=2

∫
D∩D′

∇·(q̂ρ∇q) dx= 2

∫
∂(D∩D′)

q̂ρ∇q ·ndσ∂D. (A.7)

where the fact ∇·(ρ∇q) =ε−1ρLq= 0 on D is used for the first equality on the second
line. n(x) is the outer normal unit vector at x∈∂D. The boundary ∂(D∩D′) can
be decomposed into two pieces (∂D)∩D′ and (∂D′)∩D. Note that for x∈∂D, x′=
x+α(x)n(x)∈∂D′, and q∗(x′) is equal to q(x), which is either constant zero or constant
one. Thus for x∈ (∂D)∩D′, it holds that

q̂(x) = q∗(x)−q(x) = q∗(x)−q∗(x′)
'−α(x)∇q∗(x) ·n(x)

'−α(x)∇q(x) ·n(x). (A.8)

In addition, for x∈ (∂D)\D′, then q∗ has the same boundary value at both x and x′.
Then

q̂(x) = q∗(x)−q(x) = q∗(x)−q∗(x′) = 0. (A.9)

It then follows that by noting n‖∇q on ∂D,

2

∫
(∂D)∩D′

q̂ρ∇q ·n dσ∂D'−2

∫
(∂D)∩D′

αρ|∇q|2 dσ∂D. (A.10)

Similarly, for x′∈ (∂D′)∩D, then x∈ (∂D)\D′ and

q̂(x′) = q∗(x′)−q(x′) = q(x)−q(x′)'−α(x)∇q(x) ·n(x).

It follows too that

2

∫
(∂D′)∩D

q̂ρ∇q ·n dσ∂D′ '−2

∫
(∂D)\D′

αρ|∇q|2 dσ∂D. (A.11)

Consequently, from equations (A.5)–(A.11) we have obtained that

ν[U,A′,B′]−ν[U,A,B]'−
∫
∂D

εαρ|∇q|2 dσ∂D,

and together with equations (A.3) and (A.4), we have

ν′−ν'
∫
D

ρ
(
ν/ε−|∇q|2

)
Ũ dx−

∫
∂D

εαρ|∇q|2 dσ∂D. (A.12)
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In the remaining part of proof, we calculate m−m′.

m−m′=
∫
ρ′q′ dx−

∫
ρq dx

=

(∫
ρ′q′ dx−

∫
ρq∗ dx

)
+

(∫
ρq∗ dx−

∫
ρq dx

)
. (A.13)

The first term of RHS above is determined by equations (3.8) and (A.2):∫
ρ′q′ dx−

∫
ρq∗ dx'

∫ (
−ρ
ε

(q∗+m[U,A′,B′]−1)+ρ∇q∗ ·∇w[U,A′,B′]
)
Ũ dx

'
∫ (
−ρ
ε

(q+m−1)+ρ∇q ·∇w
)
Ũ dx, (A.14)

where w=w[U,A,B] is defined by equations (3.9). For the second term of RHS in
(A.13), using the boundary conditions of q∗ and q, we decompose the integration as
follows ∫

ρq∗ dx−
∫
ρq dx=

∫
D′
ρq∗ dx+

∫
B′
ρdx−

∫
D

ρq dx−
∫
B

ρdx

=

(∫
D′
ρq∗ dx−

∫
D

ρq∗ dx

)
+

(∫
D

ρq∗ dx−
∫
D

ρq dx

)
+

∫
B′
ρ dx−

∫
B

ρ dx

=

∫
δD

ρq∗ dx+

∫
D

ρq̂ dx+

∫
δB

ρdx.

Applying the mean value theorem again, we have∫
δD

ρq∗ dx'
∫
δD

ρq dx'
∫
∂D

αρq dσ∂D =

∫
∂B

αρdσ∂B ,∫
δB

ρ dx'
∫
∂B

−αρdσ∂B .

Thus it follows that ∫
ρq∗ dx−

∫
ρq dx'

∫
D

ρq̂ dx. (A.15)

Recall that by equations (2.4) and (3.9), ρ=ρ×(−Lw) =−ε∇·(ρ∇w) in D and w= 0
on ∂D. Therefore∫

D

ρq̂ dx=−
∫
D

εq̂∇·(ρ∇w) dx=−
∫
∂D

ερq̂∇w ·ndσ∂D+

∫
D

ερ∇w ·∇q̂ dx. (A.16)

From equations (A.8) and (A.9) and the simple fact that n‖∇q on ∂D,

−
∫
∂D

ρq̂∇w ·n dσ∂D'
∫
(∂D)∩D′

αρ(∇q ·n)(∇w ·n) dσ∂D =

∫
(∂D)∩D′

αρ∇q ·∇w dσ∂D.

(A.17)
For the second term of RHS in (A.16), since ∇q̂ is not continuous on D, we cannot
apply integration by parts directly. So we first split it into two parts∫

D∩D′
ρ∇w ·∇q̂ dx+

∫
D\D′

ρ∇w ·∇q̂ dx.
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Observing that ∇q̂=−∇q on D\D′ and applying the mean value theorem again, we
obtain∫

D\D′
ρ∇w ·∇q̂ dx=−

∫
D\D′

ρ∇w ·∇q dx'
∫
(∂D)\D′

αρ∇q ·∇w dσ∂D. (A.18)

Applying integration by parts and using Lq̂= 0 on D∩D′ and w= 0 on ∂D, we are led
to∫

D∩D′
ρ∇w ·∇q̂ dx=

∫
∂(D∩D′)

wρ∇q̂ ·n dσ∂(D∩D′)−
∫
D∩D′

w∇·(ρ∇q̂) dx

=

(∫
(∂D)∩D′

+

∫
(∂D′)∩D

)
wρ∇q̂ ·n dσ∂(D∩D′)−

∫
D∩D′

wρε−1Lq̂ dx

=

∫
(∂D′)∩D

wρ∇q̂ ·n dσ∂D′

'0. (A.19)

The last equality above uses the fact that w and ∇q̂ are both small on ∂D′∩D. Con-
sequently, we deduce from equations (A.15)–(A.19) that∫

ρq∗ dx−
∫
ρq dx'

∫
∂D

εαρ∇q ·∇w dσ∂D.

This together with equations (A.13) and (A.14) yields

m−m′'
∫ (
−ρ
ε

(q+m−1)+ρ∇q ·∇w
)
Ũ dx+

∫
∂D

εαρ∇q ·∇w dσ∂D, (A.20)

and eventually from equations (A.1), (A.12), and (A.20) we conclude

κ′−κ=κ[U ′,A′,B′]−κ[U,A,B]

'
∫ (
− ρ

m
|∇q|2 +ρκ/ε

)
Ũ dx−

∫
∂D

εα
ρ

m
|∇q|2 dσ∂D

+
κ

m

(
−
∫
ρ(q+m−1)/εŨ dx+

∫
D

ρ∇q ·∇wŨ dx+

∫
∂D

εαρ∇q ·∇w dσ∂D

)
=

∫
ρ

m

[
−|∇q|2−κ(q−1)/ε+κ∇q ·∇w

]
Ũ dx

+

∫
∂D

εα
ρ

m

(
−|∇q|2 +κ∇q ·∇w

)
dσ∂D.
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