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Abstract

In the Theory and Methods Part of this paper, we discussed the basic theory and methods of Extreme

Value Modelling. Both the Generalized Extreme Value (GEV) distribution and the Generalized Pareto

Distribution (GPD) are introduced. Correspondingly, there are two methods to model the Extremes, i.e.

the Block Maxima method and the Threshold method. Then in the Application Part, we applied these

methods to fit the data to obtain the corresponding return level. Firstly, we applied the Block Maxima

Method to the simulated normal data. Then we applied the Threshold Method to the Dow Jones Index

data and the Hong Kong climate data and reached informative conclusion based on the return levels we

obtained.

KEY WORDS: Extreme value theory; Generalized Pareto distribution; Dow Jones Index; Hong Kong

climate data; Threshold method.
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1 INTRODUCTION

1 Introduction

Extreme Events are of great significance in daily life and extreme event modelling techniques are widely

used in many disciplines. In real life, we are sometimes interested in getting to know what the extreme

levels can be within a certain period of time. For example, we want to predict how large the 100-year flood

can be if we only have the past 10 years of data available, such that we can make necessary preparations.

In this case, we have to apply the Extreme Event Modelling techniques to make a reasonable predication.

There are essentially two methods to model the extremes. The first one is called the Block Maximal

method and the second one is called the Threshold method.

The models we are going to introduce in the paper focus on the statistical behavior of

Mn = max{X1, X2, ..., Xn},

where X1, X2, ..., Xn, is a sequence of independent random variables having a common distribution

function F . In Applications, the Xi usually represents values of a process measured on a regular time-

scale – perhaps hourly measurements of sea-level, or daily mean temperatures – so that Mn represents

the maximum of the process over n time units of observation. If n is the number of observations in a

year, then Mn corresponds to the annual maximum.

If we do not have access to each Xi and only know the Block Maxima, then we have no choice but to

use the Block Maxima method. However, if each Xi is known, using the Threshold method will allow us

to make better use of the available data. In this paper, we want to introduce the theory and methods of

Extreme Value Modelling and show examples of how to apply these two methods to real data. Therefore,

the paper is structured as below. In Section (2.1), we discussed the theoretical foundation of the Block

Maxima method. In Section (2.2), the threshold method is discussed to model the threshold excesses.

Then, in Section (3.1), we applied the Block Maxima method to the simulated normal data and made an

inference of the return levels using the 95% confidence intervals. In Section (3.2) and (3.3), we applied the

Threshold method to the Dow Jones Index data and Hong Kong climate data respectively and obtained

the corresponding return levels with the 95% confidence intervals. In Section (4), the R codes written to

produce the results in Section (3) are given. Finally, in Section (5), we have the summary and outlook:

a new method using Bayesian hierarchical model is introduced for the spatial data.
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2 THEORY AND METHODS

2 Theory and Methods

2.1 Asymptotic Models

2.1.1 Extremal Types Theorem

In theory the distribution of Mn can be derived exactly for all values of n:

Pr (Mn ≤ z) = Pr (X1 ≤ z, ..., Xn ≤ z)

= Pr (X1 ≤ z)× ...× Pr (Xn ≤ z)

= (F (z))n

However, this is not immediately helpful in practice, since the distribution function F is unknown. One

possibility is to use standard statistical techniques to estimate F from observed data, and then to sub-

stitute this estimate into equations above. Unfortunately, very small discrepancies in the estimate of F

can lead to substantial discrepancies for Fn.

An alternative approach is to accept that F is unknown, and to look for approximate families of

models for Fn, which can be estimated on the basis of the extreme data only. This is similar to the usual

practice of approximating the distribution of sample means by the normal distribution, as justified by

the central limit theorem.

We proceed by looking at the behavior of Fn as n → ∞ . But this alone is not enough: for any

z < z+ , where z+ is the upper end-point of F , Fn (z) → 0 as n → ∞, so that the distribution of Mn

degenerates to a point mass on z+. This difficulty is avoided by allowing a linear renormalization of the

variable Mn:

M∗
n =

Mn − bn
an

for sequences of constants {an > 0} and {bn}. Appropriate choices of the {an} and {bn} stabilize

the location and scale of M∗
n as n increases, avoiding the difficulties that arise with the variable Mn.

We therefore seek limit distributions for M∗
n, with appropriate choices of {an} and {bn}, rather than Mn.
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2.1 Asymptotic Models 2 THEORY AND METHODS

Theorem 2.1 If there exist sequences of constants {an} and {bn} such that

P

(

Mn − bn
an

≤ z

)

→ G (z) as n → ∞

where G is a non-degenerate distribution function, then G belongs to one of the following families:

I

G (z) = exp{− exp

[

−
(

z − b

a

)]

}

II

G (z) =















0 if z ≤ b;

exp{−
(

z−b
a

)−α} if z > b.

III

G (z) =















exp{−
(

z−b
a

)−α} if z ≤ b;

0 if z > b.

for parameters a > 0, b and, in the case of families II and III, α > 0.

The rescaled sample maxima (Mn−bn)/an converge in distribution to a variable having a distribution

within one of the families labeled I and II and III. Collectively, these three classes of distribution are

termed the extreme value distributions, with types I, II and III widely known as the Gumbel, Fréchet

and Weibull families respectively. Each family has a location and scale parameter, b and a respectively;

additionally, the Fréchet and Weibull families have a shape parameter α. Theorem 2.1 implies that, when

Mn can be stabilized with suitable sequences an and bn, the corresponding normalized variable M∗
n has

a limiting distribution that must be one of the three types of extreme value distribution.The remarkable

feature of this result is that the three types of extreme value distributions are the only possible limits

for the distributions of the M∗
n, regardless of the distribution F for the population. It is in this sense

that the theorem provides an extreme value analog of the central limit theorem.

2.1.2 The Generalized Extreme Value Distribution

In early applications of extreme value theory, it was usual to adopt one of the three families, and then to

estimate the relevant parameters of that distribution. But there are two weaknesses: first, a technique

is required to choose which of the three families is most appropriate for the data at hand; second, once
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2.1 Asymptotic Models 2 THEORY AND METHODS

such a decision is made, subsequent inferences presume this choice to be correct, and do not allow for

the uncertainty such a selection involves, even though this uncertainty may be substantial.

A better analysis is offered by a reformulation of the models in Theorem 2.1. It is straightforward

to check that the Gumbel, Fréchet and Weibull families can be combined into a single family of models

having distribution functions of the form

G (z) = exp

{

−
[

1 + ξ

(

z − µ

σ

)]−1/ξ
}

(1)

defined on the set {z : 1 + ξ(z − µ)/σ > 0}, where the parameters satisfy −∞ < µ < ∞, σ > 0 and

−∞ < ξ < ∞. This is the generalized extreme value (GEV) family of distributions. The model has

three parameters: a location parameter µ; a scale parameter, σ; and a shape parameter, ξ. The type II

and type III classes of extreme value distribution correspond respectively to the cases ξ > 0 and ξ < 0

in this parameterization. The subset of the GEV family with ξ = 0 is interpreted as the limit of (1) as

ξ → 0, leading to the Gumbel family with distribution function

G(z) = exp

[

− exp

{

−z − µ

σ

}]

, −∞ < z < ∞ (2)

The unification of the original three families of extreme value distribution into a single family greatly

simplifies statistical implementation. Through inference one, the data themselves determine the most

appropriate type of tail behavior, and there is no necessity to make subjective a priori judgements about

which individual extreme value family to adopt.

Theorem 2.2 If there exist sequences of constants {an > 0} and {bn} such that

P

(

Mn − bn
an

≤ z

)

→ G (z) as n → ∞ (3)

for a non-degenerate distribution function G, then G is a member of the GEV family

G (z) = exp

{

−
[

1 + ξ

(

z − µ

σ

)]−1/ξ
}

defined on the set {z : 1 + ξ(z − µ)/σ > 0}, where −∞ < µ < ∞, σ > 0 and −∞ < ξ < ∞.
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2.1 Asymptotic Models 2 THEORY AND METHODS

2.1.3 Examples

A few examples will be given to illustrate how careful choice of normalizing sequences does lead to a

limit distribution within the GEV family, as implied by Theorem 2.1.

First Example

If X1, X2, ... is a sequence of independent standard exponential exp(1) variables, F (x) = 1 − e−x for

x > 0. In this case, letting an = 1 and bn = n,

Pr {(Mn − bn) /an ≤ z} = Fn (z + logn)

=
[

1− e−(z+logn)
]n

=
[

1− n−1e−z
]n

→ exp
(

−e−z
)

as n → ∞ , for each fixed z ∈ R Hence, with the chosen an and bn, the limit distribution of Mn as

n → ∞ is the Gumbel distribution, corresponding to ξ = 0 in the GEV family.

Second Example

If X1, X2, ... is a sequence of independent standard Fréchet variables, F (x) = exp(−1/x) for x > 0.

Letting an = n and bn = 0,

Pr {(Mn − bn) /an ≤ z} = Fn (nz)

= [exp {−1/(nz)}]n

= exp(−1/z)

as n → ∞, for each fixed z > 0. Hence, the limit in this case - which is an exact result for all n, because

of the max-stability of F - is also the standard Fréchet distribution: ξ = 1 in the GEV family.

Third Example

If X1, X2, ... are a sequence of independent uniform U(0, 1) variables, F (x) = x for 0 ≤ x ≤ 1. For fixed

8



2.1 Asymptotic Models 2 THEORY AND METHODS

z < 0, suppose n > −z and let an = 1/n and bn = 1. Then,

Pr {(Mn − bn) /an ≤ z} = Fn
(

n−1z + 1
)

=
(

1 +
z

n

)n

= ez

as n → ∞. Hence, the limit distribution is of Weibull type, with ξ = −1 in the GEV family.

Fourth Example

If X1, X2, ... are a sequence of independent normal random variables, let an = 1√
2 lnn

and bn =
√
2 lnn−

ln lnn+ln(4π)

2
√
2 lnn

. Then,

Pr {(Mn − bn) /an ≤ z} = e−e−x

as n → ∞. Hence, the limit distribution is of Gumbel type, corresponding to ξ = 0 in the GEV family.

2.1.4 Modelling extremes using Block Maxima

The apparent difficulty that the normalizing constants {an > 0} and {bn} will be unknown in practice

is easily resolved. Assuming (3), for large enough n,

P

(

Mn − bn
an

≤ z

)

≈ G (z)

Equivalently,

P (Mn ≤ z) ≈ G((z − bn)/an)

= G∗(z)

where G∗ is another member of the GEV family. In other words, if Theorem 2.2 enables approximation

of the distribution of M∗
n by a member of the GEV family for large n, the distribution of Mn itself can

also be approximated by a different member of the same family.

A series of independent observations X1, X2...are blocked into sequences of observations of length n,

for some large value of n, generating a series of block maxima, Mn,1, ...,Mn,m, say, to which the GEV
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2.1 Asymptotic Models 2 THEORY AND METHODS

distribution can be fitted. Often the blocks are chosen to correspond to a time period of length one

year, in which case n is the number of observations in a year and the block maxima are annual maxima.

Estimates of extreme quantiles of the annual maximum distribution are then obtained by inverting (2):

zp =















µ− σ
ξ

[

1− {−log (1− p)}−ξ
]

, for ξ 6= 0;

µ− σlog {−log (1− p)} , for ξ = 0.

(4)

where G(zp) = 1− p.

Definition A return period also known as a recurrence interval is an estimate of the likelihood of an

event, such as an earthquake, flood or a river discharge flow to occur. It is a statistical measurement

typically based on historic data denoting the average recurrence interval over an extended period of time,

and is usually used for risk analysis (e.g. to decide whether a project should be allowed to go forward in

a zone of a certain risk, or to design structures to withstand an event with a certain return period).

Definition The return level is associated with the corresponding return period and indicates the level

the maxima can reach within such a return period (e.g. the 100-year flood return level).

In common terminology, Zp is the return level associated with the return period 1/p, since to a

reasonable degree of accuracy, the level zp is expected to be exceeded on average once every 1/p years.

Define yp = −log(1− p), then (4) will become,

zp =















µ− σ
ξ

[

1− y−ξ
p

]

, for ξ 6= 0;

µ− σlog yp, for ξ = 0.

The return level plot is the graph in which if Zp is plotted against yp on a logarithmic scale - or

equivalently, if Zp is plotted against log yp. If ξ = 0, the plot is linear. If ξ < 0, the plot is convex with

asymptotic limit as p → 0 at µ− σ/ξ. If ξ > 0, the plot is concave and has no finite bound.

Motivated by Theorem 2.2, the GEV provides a model for the distribution of block maxima. Its

application consists of blocking the data into blocks of equal length, and fitting the GEV to the set of

block maxima. But in implementing this model for any particular dataset, the choice of block size can
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2.1 Asymptotic Models 2 THEORY AND METHODS

be critical. The choice amounts to a trade-off between bias and variance: blocks that are too small mean

that approximation by the limit model in Theorem 2.2 is likely to be poor, leading to bias in estimation

and extrapolation; large blocks generate few block maxima, leading to large estimation variance. We

now simplify notation by denoting the block maxima Z1, ..., Zm. These are assumed to be independent

variables from a GEV distribution whose parameters are to be estimated. If the Xi are independent then

the Zi are also independent. Under the assumption that Z1, ..., Zm are independent variables having the

GEV distribution, the log-likelihood for the GEV parameters when ξ 6= 0 is

l (µ, σ, ξ) = −m log (σ)− (1 + 1/ξ)

m
∑

i=1

log

[

1 + ξ

(

zi − µ

σ

)]

−
m
∑

i=1

[

1 + ξ

(

zi − µ

σ

)](−1/ξ)

, (5)

provided that

1 + ξ

(

zi − µ

σ

)

> 0, ∀i = 1, ..,m (6)

The case ξ = 0 requires separate treatment using the Gumbel limit of the GEV distribution. This

leads to the log-likelihood

l (µ, σ) = −m log σ −
m
∑

i=1

(

zi − µ

σ

)

−
m
∑

i=1

exp

{

−
(

zi − µ

σ

)}

(7)

Maximization of the pair of Equations.(5) and (7) with respect to the parameter vector (µ, σ, ξ) leads

to the maximum likelihood estimate with respect to the entire GEV family.

After obtaining the maximum likelihood estimates of the GEV parameters, we can substitute them

into (4) and obtain the maximum likelihood estimate of zp for 0 < p < 1, the 1/p return level, as

ẑp =















µ̂− σ̂
ξ̂

[

1− y−ξ̂
p

]

for ξ̂ 6= 0

µ̂− σ̂ log yp for ξ̂ = 0

where yp = − log (1− p). Furthermore, by the delta method, we can obtain the variance of the maximum

likelihood estimate

V ar(ẑp) ≈ ∇zTp V∇zp

11



2.1 Asymptotic Models 2 THEORY AND METHODS

where V is the variance-covariance matrix of
(

µ̂, σ̂, ξ̂
)

and

∇zTp =

[

∂zp
∂µ

∂zp
∂σ

∂zp
∂ξ

]

=

[

1 −ξ−1
(

1− y−ξ
p

)

σξ−2
(

1− y−ξ
p

)

− σξ−1y−ξ
p log yp

]

evaluated at
(

µ̂, σ̂, ξ̂
)

.

2.1.5 Modelling Checking

It is important to check the validity of an extrapolation based on a GEV model. To achieve the goal, we

can use the probability plot, quantile plot, return level plot, and density plot.

• A probability plot is a comparison of the empirical and fitted distribution functions. With ordered

block maximum data z(1) ≤ z(2) ≤ ... ≤ z(m), the empirical distribution function evaluated at z(i)

is given by

G̃
(

z(i)
)

= i/(m+ 1)

By substitution of parameter estimates into (1), the corresponding model based estimates are

Ĝ
(

z(i)
)

= exp

{

−
[

1 + ξ

(

z − µ

σ

)]−1/ξ
}

If the GEV model is working well,

G̃
(

z(i)
)

≈ Ĝ
(

z(i)
)

for each i, so a probability plot, consisting of the points

{(

G̃
(

z(i)
)

, Ĝ
(

z(i)
)

)

, i = 1, ...,m
}

should lie close to the unit diagonal. Any substantial departures from linearity are indicative of

some failing in the GEV model.

• Similarly, a quantile plot consists

{(

Ĝ−1 (i/(m+ 1)) , zi

)

, i = 1, ...,m
}

12



2.1 Asymptotic Models 2 THEORY AND METHODS

and it should lie close to the unit diagonal. Any substantial departures from linearity are indicative

of some failing in the GEV model.

• The return level plot summarises the fitted model and consists of the locus of points

{(log yp, ẑp) , 0 < p < 1}

Confidence intervals can be added to the plot to increase its informativeness. Empirical estimates

of the return level function can also be added, enabling the return level plot to be used as a model

diagnostic.

• For completeness, an equivalent diagnostic based on the density function is a comparison of the

probability density function of a fitted model with a histogram of the data. This is generally less

informative than the previous plots, since the form of a histogram can vary substantially with the

choice of grouping intervals.

It is worth noting that the first two methods work for any continuous distribution. The third one is

a special modelling checking method for extreme value analysis.

2.1.6 GEV distribution for Minima

Definition

M̃n = min{X1, ..., Xn}

and

µ̃ = −µ

Theorem 2.3 If there exist sequences of constants {an > 0} and {bn} such that

P

(

M̃n − bn
an

≤ z

)

→ G̃ (z) as n → ∞ (8)

for a non-degenerate distribution function G̃, then G̃ is a member of the GEV family of distributions for

minima:

G̃ (z) = 1− exp

{

−
[

1− ξ

(

z − µ̃

σ

)]−1/ξ
}

13



2.2 Threshold Models 2 THEORY AND METHODS

defined on the set {z : 1 + ξ(z − µ̃)/σ > 0}, where −∞ < µ̃ < ∞, σ̃ > 0 and −∞ < ξ < ∞.

In situations where it is appropriate to model block minima, the GEV distribution for minima can be

applied directly. An alternative is to exploit the duality between the distributions for maxima and min-

ima. Given data z1, ..., zm that are realizations from the GEV distribution for minima, with parameters

(µ̃, σ, ξ), this implies fitting the GEV distribution for maxima to the data −z1, ...,−zm The maximum

likelihood estimate of the parameters of this distribution corresponds exactly to that of the required

GEV distribution for minima, apart from the sign correction for µ only: ˆ̃µ = −µ̂.

2.2 Threshold Models

2.2.1 Introduction and Motivation

Modelling only block maxima is a wasteful approach to extreme value analysis if other data on extremes

are available. Therefore, if an entire time series of, say, hourly or daily observations is available, then we

can make better use of the data by avoiding altogether the procedure of blocking. Let X1, X2, ... be a

sequence of independent random variables with common distribution function F , and let

Mn = max{X1, ..., Xn}

It is natural to regard those of the Xi exceeding some high threshold u as extreme events. Denoting

an arbitrary term in the Xi sequence by X , it follows that a description of the stochastic behaviour of

extreme events is given by the conditional probability

Pr {X > u+ y|X > u} =
1− F (u+ y)

1− F (u)
, y > 0

If the parent distribution F were known, then the distribution of threshold exceedances would also be

known. In practical applications, this is not the case. Therefore, we seek approximations that broadly

applicable for high values of the threshold. The results are given in the following theorem.

14



2.2 Threshold Models 2 THEORY AND METHODS

2.2.2 The Generalized Pareto Distribution

Theorem 2.4 Denote an arbitrary term in the Xi sequence by X, and suppose that F satisfies Theorem

2.2, so that for large n,

P (Mn ≤ z) ≈ G(z),

where

G(z) = exp

{

−
[

1 + ξ

(

z − µ

σ

)]−1/ξ
}

for some µ, σ > 0, ξ. Then, for large enough u, the distribution function of (X − u), conditional on

X > u, is approximately

H(y) = 1−
(

1 +
ξy

σ̃

)−1/ξ

(9)

defined on {y : y > 0 and (1 + ξy/σ̃) > 0}, where

σ̃ = σ + ξ(u− µ)

The family of distributions defined by Equation (9) is called the generalized Pareto family. Theorem

2.4 implies that, if block maxima have approximating distribution G, then threshold excesses have a

corresponding approximate distribution within the generalized Pareto family. Moreover, the parameters

of the generalized Pareto distribution of threshold excesses are uniquely determined by those of the

associated GEV distribution of block maxima.

2.2.3 Threshold Selection

The raw data consist of a sequence of independent and identically distributed measurement x1, ...., xn.

Extreme events are identified by defining a high threshold u, for which the exceedances are {xi : xi > u}.

Label these exceedances by x(1), ...., x(k), and define threshold excesses by yj = x(j)−u, for j = 1, ..., k. By

Theorem 2.4, the Yi may be regarded as independent realizations of a random variable whose distribution

can be approximated by a member of the generalized Pareto family. Inference consists of fitting the

generalized Pareto family to the observed threshold exceedances, followed by model verification and

extrapolation.

This approach contrasts with the block maxima approach through the characterization of an obser-

vation as extreme if it exceeds a high threshold. But the issue of threshold choice is analogous to the
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2.2 Threshold Models 2 THEORY AND METHODS

choice of block size in the block maxima approach, implying a balance between bias and variance. In this

case, too low a threshold is likely to violate the asymptotic basis of the model, leading to bias; too high

a threshold will generate few excesses with which the model can be estimated, leading to high variance.

The standard practice is to adopt as low a threshold as possible, subject to the limit model providing a

reasonable approximation. Two methods are available for this purpose: one is an exploratory technique

carried out prior to model estimation; the other is an assessment of the stability of parameter estimates,

based on the fitting of models across a range of different thresholds.

The first method is based on the mean of the generalized Pareto distribution. If Y has a generalized

Pareto distribution with parameters σ and ξ, then

E (Y ) =
σ

1− ξ

provided ξ < 1. When ξ ≥ 1 the mean is infinite. Now, suppose the generalized Pareto distribution is

valid as a model for the excesses of a threshold u0 generated by a series X1, ....., Xn, of which an arbitrary

term is denoted X. Then, we have,

E (X − u0|X > u0) =
σu0

1− ξ

provided ξ < 1, where we adopt the convention of using σu0
to denote the scale parameter corresponding

to excesses of the threshold u0. σu0
can be defined mathematically too as below:

σu0
= σ + ξ (u0 − µ)

But if the generalized Pareto distribution is valid for excesses of the threshold u0, it should equally be

valid for all thresholds u > u0, subject to the appropriate change of scale parameter to σu0
. Hence, for

u > u0,

E (X − u|X > u) =
σu

1− ξ

=
σu0

+ ξ(u − u0)

1− ξ

So, for u > u0 , E (X − u|X > u) is a linear function of u. Furthermore, E (X − u|X > u) is simply

the mean of the excesses of the threshold u, for which the sample mean of the threshold excesses of u

provides an empirical estimate. These estimates are expected to change linearly with u, at levels of u

for which the generalized Pareto model is appropriate. This leads to the following procedure. The locus

16



2.2 Threshold Models 2 THEORY AND METHODS

of points
{(

u,
1

nu

nu
∑

i=1

(

x(i) − u
)

)

: u < xmax

}

where x(1), ...., x(nu) consist of the nu observations that exceed u, and xmax is the largest of the xi, is

termed the mean residual life plot. Above a threshold u0 at which the generalized Pareto distribution

provides a valid approximation to the excess distribution, the mean residual life plot should be approx-

imately linear in u. Confidence intervals can be added to the plot based on the approximate normality

of sample means.

The second method for threshold selection is to estimate the model at a range of thresholds. Above

a level u0 at which the asymptotic motivation for the generalized Pareto distribution is valid, estimates

of the shape parameter ξ should be approximately constant, while estimates of σu should be linear in u.

Since sometimes the first method is difficult to interpret, it could be a better way to just look for the

stability while varying the threshold of the fitted GPD. The theoretical basis is explained as follows.

By the Theorem 2.4, if a generalized Pareto distribution is a reasonable model for excesses of a

threshold u0, then excesses of a higher threshold u should also follow a generalized Pareto distribution.

The shape parameters of the two distributions are identical. However, denoting by σu the value of the

generalized Pareto scale parameter for a threshold of u > u0, it follows

σu = σu0
+ ξ(u− u0).

We can see the scale parameter changes with respect to u. In order to overcome the difficulty, we can

reparameterize the generalized Pareto scale parameter as

σ∗ = σu − ξu,

which is now constant with respect to u. Consequently, estimates of both σ∗ and ξ should be constant

above u0, if u0 is a valid threshold for excesses to follow the generalized Pareto distribution. Therefore,

it makes sense to plot both σ̂∗ and ξ̂ against u with their corresponding confidence intervals, and select

u0 as the lowest value of u for which the estimates remain near-constant.
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2.2.4 Model Checking

After obtaining the proper threshold of the fitted GPD, we need to assess the quality of the fitted

generalized Pareto model. It can be done using probability plots, quantile plots, return level plots, and

density plots.

With the threshold u, threshold excesses y(1) ≤ .... ≤ y(k) and an estimated model Ĥ , the probability

plot is given by

{(

i/ (k + 1) , Ĥ
(

y(i)
)

)

; i = 1, ..., k
}

where

Ĥ (y) = 1−
(

1 +
ξ̂y

σ̂

)−1/ξ̂

,

when ξ̂ 6= 0.

The quantile plot is given in a similar way: when ξ̂ 6= 0,

{(

Ĥ−1 (i/ (k + 1)) , y(i)

)

, i = 1, ..., k
}

where

Ĥ−1 (y) = u+
σ̂

ξ̂

[

y−ξ̂ − 1
]

According to the theory, if excesses of u fits into the GPD model, both the probability and quantile

plots should consist of points that are approximately linear.

The return level plot is given by {(m, x̂m)} for large values of m, where

x̂m = u+
σ̂

ξ̂

[

(

mζ̂u

)ξ̂

− 1

]

and

ζ̂u = Pr{X > u}

Lastly, the density function of the fitted GPD model can be compared to a histogram of the threshold

exceedances.
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3 Application

3.1 Simulation of data from normal distribution

3.1.1 Introduction

We now consider the data x1,1, x1,2, ...., x1,n, x2,1, x2,2, ...., x2,n, x3,1, ....., xm,1, ....., xm,n from standard

normal distribution: N (0, 1). The data set is generated from R. Dividing the data into m blocks, we

have n data points in each block. We now simplify notation by denoting the block maxima Z1, Z2, ..., Zm.

These are assumed to be independent variables from a GEV distribution who’se parameters are to be

estimated given that n is large enough. Since Xi are independent, then the Zi are also independent. We

know that the log-liklihood for the GEV parameters when ξ 6= 0 is as follows:

l (µ, σ, ξ) = −m log (σ)− (1 + 1/ξ)
m
∑

i=1

log

[

1 + ξ

(

zi − µ

σ

)]

−
m
∑

i=1

[

1 + ξ

(

zi − µ

σ

)](−1/ξ)

,

provided that

1 + ξ

(

zi − µ

σ

)

> 0, ∀i = 1, ..,m

3.1.2 maximal likelihood estimates and corresponding confidence intervals

in this specific case, we have m = 200 and n = 500. Using numerical optimisation algorithms, we can

obtain the maximal likelihood estimate with respect to the entire GEV family. Using packages in R,

we have the estimates as follows: µ = 2.886553, with a 95% confidence interval [2.837136, 2.93597], σ =

0.3216, with a 95% confidence interval [0.286984, 0.3562161], ξ = −0.08799757, with a 95% confidence

interval [−0.1778897, 0.001894544]. Notice that the confidence interval of ξ contains 0, which means the

Gumbel Distribution could be a more accurate model in the entire GEV family. Also, it makes sense

that confidence intervals for return levels obtained by fitting against Gumbel Distribution are narrower

than those obtained by fitting against a member of general GEV distribution. All of the four diagnostic

plots above: probability plot, quantile plot, return level plot and density plot, provides evidence that

GEV is a good fit to the block maxima.
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Figure 1: GEV fit
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Figure 2: Gumbel fit
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3.1.3 Inference for return levels

By substitution of the maximum likelihood estimates of the GEV parameters, the maximum likelihood

estimate of zp for 0 < p < 1, the 1/p return level, is obtained as

ẑp =















µ̂− σ̂

ξ̂

[

1− y−ξ̂
p

]

for ξ̂ 6= 0

µ̂− σ̂ log yp for ξ̂ = 0

where yp = − log (1 − p). Furthermore, by the delta method, we have

V ar(ẑp) ≈ ∇zTp V∇zp

where V is the variance-covariance matrix of
(

µ̂, σ̂, ξ̂
)

and

∇zTp =

[

∂zp
∂µ

∂zp
∂σ

∂zp
∂ξ

]

=

[

1 −ξ−1
(

1− y−ξ
p

)

σξ−2
(

1− y−ξ
p

)

− σξ−1y−ξ
p log yp

]

evaluated at
(

µ̂, σ̂, ξ̂
)

. Apart from the delta method, the profile likelihood function can also be used to

obtain a more accurate confidence interval of zp by expressing µ with zp, σ, ξ and substituting into the

GEV model. It is usually long return periods, corresponding to small values of p, that are of greatest

interest.

For the specific example above, estimates and confidence intervals for returns levels can be obtained. For

example, when p = 1/10, the estimate for the 10-year return level ẑ0.1is 3.536803, with a 95% confidence

interval [3.453434, 3.641219], and similarly when p = 1/100, the estimate for the 100-year return level

ẑ0.01is 4.136239, with a 95% confidence interval [3.955557, 4.447778].
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3.2 Application in stock market

3.2.1 Introduction

Sometimes people are interested in the extreme event in stock markets, such as how large the daily

loss percentage would be within 100 years. Such problems can be modelled and solved using Threshold

Method from the Extreme Event Modelling. An example with detailed procedures is given in this section

to illustrate how to obtain 100-year return level of daily loss percentage in stock market.

Since the Dow Jones Index data is readily available from the Internet, we can just use it to measure

the daily loss percentage in the stock market in US. We obtained the daily Dow Jones Index data from

1896-05-26 to 2013-08-02, totalling 31960 data points. After inputting the csv file containing the data

into R, we can use the existing R package ”ismev” and ”extRemes” to choose the proper threshold, fit

the data into the Generalized Pareto Distribution (GPD), and obtain the 100-year return level of daily

loss percentage in stock market with the corresponding 95% confidence interval.

3.2.2 Selecting the proper threshold

Let us first have a brief look at the data points in the plot below.
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Figure 3: data points of daily percentage change of Dow Jones Index
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In the plot, the index axis shows the index of 31960 data points, which are numbered in the time order.

The Perc index shows the daily percentage change for each data point. A positive number indicates the

daily gain while a negative number indicates the daily loss. Since there are very few data points (only

about 3% out of all data points) with the daily loss greater than 2%, it is safe to assume that the event of

reasonably large daily loss percentage occurs can be classified into extreme events and that the threshold

models method from the extreme event modelling can be used. We use the threshold method instead of

the Block Maxima method, because we want to make the most use of the available data points.

The first procedure when using the threshold method is to select the proper threshold. As stated

before in the subsection (2.3.2), two methods will be used before making a final decision.

The first method is to select a proper threshold such that the mean residue life plot should be

approximately linear above the selected proper threshold u0.
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Figure 4: mean residue life plot

In the mean residue life plot above, the information above the daily loss percentage u = 10 is not

very accurate due to very few points (actually only 5) with daily loss greater than 10%. Therefore, we

should ignore that part of the plot and conclude that the proper threshold u0 should satisfy u0 ≥ 3, since

it is easy to see that the plot is approximately linear above u = 3.

To further explore what the proper threshold should be, the second method is used: look for the
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stability of parameters σ∗ and ξ while varying the threshold of the fitted GPD.
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Figure 5: parameter estimates against threshold

From the plot above, we can see that the estimated parameters are more or less stable when u ≥ 5.
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Therefore, the selected threshold of u = 5 appears reasonable.

3.2.3 Obtaining the 100-year return level of daily loss percentage

Firstly, we need to fit the data points into the GPD with the selected threshold u = 5. The maximum

likelihood estimates in this case are

(

σ̂, ξ̂
)

= (1.2694261, 0.3737744)

with a corresponding maximised log-likelihood of -143.4933. The variance-covariance matrix is calculated

as








0.04395658 −0.01503806

−0.01503806 0.01762163









leading to standard errors of 0.2096583 and 0.1327465 for σ̂ and ξ̂ respectively. In particular, it follows

that a 95% confidence interval for ξ is obtained as 0.3737744±1.96×0.1327465 = [0.1135913, 0.6339575].

Since the maximum likelihood estimate ξ > 0, it leads to an unbounded distribution in the return level

plot and the evidence for this is pretty strong, since the 95% interval for ξ is exclusively in the positive

domain.

Since there are 89 exceedances of the threshold u = 5 in the complete set of 31960 observations,

the maximum likelihood estimate of the exceedance probability is ζ̂u = 89/31960 = 0.002784731, with

approximate variance V ar
(

ζ̂u

)

= ζ̂u

(

1− ζ̂u

)

/31960 = 8.688912× 10−8. Hence, the complete variance-

covariance matrix for
(

ζ̂ , σ̂, ξ̂
)

is

V =

















8.688912× 10−8 0 0

0 0.04395658 −0.01503806

0 −0.01503806 0.01762163

















We focus on the 100-year return level x̂m, thus here number of observations m = 365 × 100. From

the theory part, we know that

xm = u+
σ

ξ

[

(mζu)
ξ − 1

]

and

V ar (x̂m) ≈ ∇xT
mV∇xm,
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where

∇xT
m =

[

∂xm

∂ζu
, ∂xm

∂σ , ∂xm

∂ξ

]

=

[

σmξζξ−1
u , ξ−1

{

(mζu)
ξ − 1

}

, −σξ−2
{

(mζu)
ξ − 1

}

+ σξ−1 (mζu)
ξ
log (mζu)

]

evaluated at
(

ζ̂, σ̂, ξ̂
)

. Thus, we can substitute into the formulas above and obtain x̂m = 20.710722 and

V ar (x̂m) = 27.80601, leading to a 95% confidence interval for xm of [10.375366, 31.04608] .

On the next page, we draw the diagnostic plots for the fitted GPD with the threshold u = 5 and the

return level plot for the model. Since out of the diagnostic plots the probability plot and quantile plot

are approximately linear and the straight line fits almost all the data points, it is safe to conclude that

the chosen GPD with the threshold u = 5 fits the data points pretty well and that the model we chose

is valid. We also draw the return level plot separately so that the plot is larger and clearer to see. You

can easily find the 100-year return level x̂m in the plot.
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Figure 6: Diagnostic plots
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Figure 7: return level plot

3.2.4 Conclusion

We know from the part above that the 95% confidence interval for the 100-year return level of daily loss

percentage xm is [10.375366, 31.04608]. It just means: we are 95% confident to say that the maximum

daily loss percentage within a hundred years will fall between 10.375366 and 31.04608. Although the

range is pretty wide, we can still conclude that the probability of the event that daily loss exceeds 10%

occurring within a hundred years is about 0.95, which just means that every 100 years stock market

crash with daily loss more than 10% will occur with a very high probability. Therefore, perhaps some

precautions can be done to get prepared for the possible stock market crash given that we already know

how large the maximum daily loss percentage can be within a hundred years.

In particular, the same statistical method used here for Dow Jones Index can be applied in other stock

market around the world, such as Hong Kong, China, Japan and so on. The comparisons of the 100-year

return level among these different stock markets would be interesting. In addition, the analysis of data

at financial turmoil period could reveal extreme patterns of financial market under huge uncertainty.
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3.3 Application in Hong Kong climate data

3.3.1 Introduction

It is a long tradition to use the extreme value analysis to study climate and meteorology problem. Here

we study the daily maximum temperature in Hong Kong. Since the Hong Kong climate data is publicly

available from the Hong Kong Observatory website: http://www.weather.gov.hk/cis/data_e.htm,

we can easily have access to the daily data from 1997 till now with detailed information, including mean

pressure, max/mean/min air temperature, mean relative humility and so on. However, we will only focus

on the maximum air temperature, because our goal is to explore how high the maximum air temperature

can be within a hundred years and within a hundred and fifty years respectively. The results can be

significant in real life applications, since we then know what the worst situation we are facing is and can

take measures accordingly.

We will basically use the similar method we used in the subsection (3.2) Application in stock

market: Threshold Method from the Extreme Value Modelling. However, in this case it is a little

bit more complicated since we have to take into account the non-stationarity of the data points, since

obviously the daily maximum air temperature will depend on the month of the year and tend to cluster

together. To overcome the difficulty, we will only select the data points from June, July and August,

since by observation only the data points in these three months will likely become the maximum air

temperature throughout the year. We draw the plot of the data points. In the Figure 8, the x-axis

shows the index of 1564 data points, which are numbered in the time order. The y-index shows the daily

maximum air temperature for each data point. From the Figure 8, we can easily see that non-stationarity

of the data points we chose can be ignored. Therefore, we can simply use the traditional method used

before. We obtained the daily maximum air temperature data in June, July and August from 1997 till

2013, totalling 1564 data points. We can use the existing R package ”ismev” and ”extRemes” to choose

the proper threshold, fit the data into the Generalized Pareto Distribution (GPD), and obtain the 100-

year and 150-year return level of daily maximum air temperature in Hong Kong with the corresponding

95% confidence interval.
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Figure 8: data points of daily maximum temperature of Hong Kong climate data

3.3.2 Selecting the proper threshold

Based on the Figure 8, it is safe to assume that the event of high daily maximum air temperature occurs

can be classified into extreme events and that the threshold models method from the extreme event

modelling can be used. We use the threshold models method instead of the Block Maxima method,

because we want to make the most use of the available data points.

The first procedure when using the threshold models method is to select the proper threshold. As

stated before in the theory part, two methods will be used before making a final decision.

The first method is the mean residue life plot should be approximately linear above the proper

threshold u0.
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Figure 9: mean residue life plot

In the mean residue life plot above, it is approximately linear above u = 32. Therefore, we can

conclude that the proper threshold u0 should satisfy u0 ≥ 32.

To further explore what the proper threshold should be, the second method is used: look for the

stability of parameters σ∗ and ξ while varying the threshold of the fitted GPD.
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Figure 10: parameter estimates against threshold

From the plot above, we can see that the estimated parameters are more or less stable when u ≥ 32.

Therefore, the selected threshold of u = 32 appears reasonable.
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3.3.3 Obtaining the 100-year and 150-year return level of daily maximum air temperature

Firstly, we need to fit the data points into the GPD with the selected threshold u = 32. The maximum

likelihood estimates in this case are

(

σ̂, ξ̂
)

= (1.0722162,−0.2809016)

with a corresponding maximised log-likelihood of -449.7361. The variance-covariance matrix is calculated

as








0.002685927 −0.0011527629

−0.001152763 0.0007207715









, leading to standard errors of 0.05182593 and 0.02684719 for σ̂ and ξ̂ respectively. In particular, it follows

that a 95% confidence interval for ξ is obtained as−0.2809016±1.96×0.02684719 = [−0.3335221,−0.2282811].

Since the maximum likelihood estimate ξ < 0, it leads to an bounded distribution in the return level

plot and the evidence for this is pretty strong, since the 95% interval for ξ is exclusively in the negative

domain.

Since there are 570 exceedances of the threshold u = 32 in the complete set of 1564 observations,

the maximum likelihood estimate of the exceedance probability is ζ̂u = 570/1564 = 0.3644501, with

approximate variance V ar
(

ζ̂u

)

= ζ̂u

(

1− ζ̂u

)

/1564 = 1.480986× 10−4. Hence, the complete variance-

covariance matrix for
(

ζ̂ , σ̂, ξ̂
)

is

V =

















1.480986× 10−4 0 0

0 0.002685927 −0.0011527629

0 −0.001152763 0.0007207715

















We firstly calculate the 100-year return level x̂m, thus here number of observations m = 365 × 100.

From the theory part, we know that

xm = u+
σ

ξ

[

(mζu)
ξ − 1

]

and

V ar (x̂m) ≈ ∇xT
mV∇xm,
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where

∇xT
m =

[

∂xm

∂ζu
, ∂xm

∂σ , ∂xm

∂ξ

]

=

[

σmξζξ−1
u , ξ−1

{

(mζu)
ξ − 1

}

, −σξ−2
{

(mζu)
ξ − 1

}

+ σξ−1 (mζu)
ξ
log (mζu)

]

evaluated at
(

ζ̂, σ̂, ξ̂
)

. Thus, we can substitute into the formulas above and obtain x̂m = 35.55201 and

V ar (x̂m) = 0.02606413, leading to a 95% confidence interval for xm of [35.23559, 35.86844] .

Similarly we can calculate the 150-year return level x̂m, thus here number of observations m =

365×150. We obtain x̂m = 35.58055, leading to a 95% confidence interval for xm of [35.25327, 35.90782] .

On the next page, we draw the diagnostic plots for the fitted GPD with the threshold u = 32 and

the return level plot for the model. Since out of the diagnostic plots the probability plot and quantile

plot are approximately linear and the straight line fits almost all the data points, it is safe to conclude

that the chosen GPD with the threshold u = 32 fits the data points pretty well and that the model we

chose is valid. We also draw the return level plot separately so that the plot is larger and clearer to see.

You can easily find the 100-year and 150-year return level x̂m in the plot.
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Figure 11: Diagnostic plots
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Figure 12: return level plot

3.3.4 Conclusion

We know from the part above that the 95% confidence interval for the 100-year return level of daily

maximum air temperature xm is [35.23559, 35.86844]. It just means: we are 95% confident to say that

the maximum daily loss percentage within a hundred years will fall between 35.23559 and 35.86844.

Similarly, the 150-year return level of daily maximum air temperature xm is [35.25327, 35.90782], which

means: we are 95% confident to say that the maximum daily loss percentage within a hundred and fifty

years will fall between 35.25327 and 35.90782. Although the range is pretty wide, we can still conclude

that the maximum air temperature will most likely never reach 36 degrees in Hong Kong even within

150 years. Therefore, we know what we are up to and take some precautionary measures in the event of

extremely high air temperature.
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4 R codes

4.1 Simulation of data from normal distribution

n=500

m=100000/n

Z=rep(0,m)

x=rnorm(n=n*m,mean=0,sd=1)

for (i in 1:m){

Z[i]=max(x[((i-1)*n+1):(i*n)])

}

Z=sort(x=Z,decreasing=F)

ml=gev.fit(Z)

mu=ml$mle[1]

sigma=ml$mle[2]

xi=ml$mle[3]

covariance_matrix=ml$cov

mu_lb=mu-qnorm(p=0.975)*sqrt(covariance_matrix[1,1])

mu_ub=mu+qnorm(p=0.975)*sqrt(covariance_matrix[1,1])

sigma_lb=sigma-qnorm(p=0.975)*sqrt(covariance_matrix[2,2])

sigma_ub=sigma+qnorm(p=0.975)*sqrt(covariance_matrix[2,2])

xi_lb=xi-qnorm(p=0.975)*sqrt(covariance_matrix[3,3])

xi_ub=xi+qnorm(p=0.975)*sqrt(covariance_matrix[3,3])

plot(ml)

gum.diag(gum.fit(Z))

para=c(mu,mu_lb,mu_ub,sigma,sigma_lb,sigma_ub,xi,xi_lb,xi_ub)
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4.2 Application in stock market

table=read.csv("DJIA.csv",stringsAsFactors=FALSE,header=T,sep=";")

which(table$VALUE=="#N/A")

table=table[-which(table$VALUE=="#N/A"),]

write.csv(table,file="modified.csv")

table$VALUE=as.numeric(table$VALUE)

perc=rep(x=0,times=length(table$VALUE))

for (i in 2:length(perc)){

perc[i]=(table$VALUE[i]-table$VALUE[i-1])/table$VALUE[i]

}

perc=100*perc

plot(perc,ylab= expression("perc "%*% "%"))

table$PERC=perc

table$DATE[which(table$PERC==min(perc))]

table$DATE[which(table$PERC==max(perc))]

write.csv(table,file="modified.csv")

loss=-perc

mrl.plot(loss)

title(xlab="daily loss percentage")

gpd.fitrange(loss,1,9,nint=20)

loss.gpd=gpd.fit(loss,5)

z=return.level(z=loss.gpd, conf = 0.05, rperiods= c(10,100,210,510,810,980), make.plot = TRUE)

z$return.level

z$confidence.delta

gpd.diag(loss.gpd)
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4.3 Application in Hong Kong climate data

y=read.csv("dailyhk.csv",sep=";")

plot(y$Max.Temp..deg..C.,ylab="daily maximum temperature")

mrl.plot(y$Max.Temp..deg..C.)

gpd.fitrange(y$Max.Temp..deg..C., 30, 34, nint = 20)

b.gpd=gpd.fit(y$Max.Temp..deg..C.,32)

gpd.diag(b.gpd)

s=return.level(z=b.gpd, conf = 0.05, rperiods= c(10,100,150,210,510,810,980), make.plot = TRUE)

s$return.level

s$confidence.delta

5 Summary and Outlook

In the Theory and Methods Part of this paper, we discussed the basic theory and methods of Extreme

Value Modelling. Both the Generalized Extreme Value (GEV) distribution and the Generalized Pareto

Distribution (GPD) are introduced. Correspondingly, there are two methods to model the Extremes, i.e.

the Block Maxima method and the Threshold method. Then in the Application Part, we applied these

methods to fit the data to obtain the corresponding return level. Firstly, we applied the Block Maxima

Method to the simulated normal data. Then we applied the Threshold Method to the Dow Jones Index

data and the Hong Kong climate data and reached informative conclusion based on the return levels we

obtained.

In the Hong Kong climate data case, we assume that the data are obtained from one station of the

same location. However, in real world application, it is possible that the data are obtained from a number

of stations of different locations. If so, we can use the Bayesian hierarchical model for spatial extremes

to produce a map characterising extreme behaviour across a geographic region. Such methodology is

discussed at length in the paper (2). The basic idea of the Bayesian hierarchical model is discussed in

the rest of this section.

To produce the return level map, both the exceedances and their rate of occurrence must be modelled,
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and we construct separate hierarchical models for each. Hierarchical models allow one to statistically

model a complex process and its relationship to observations in several simple components. There

are three layers in both of our hierarchal models. The base layer (Data Layer) models the data (either

exceedance amounts or number of exceedances) at each station. The second layer (Process Layer) models

the latent process that drives the climatological extreme precipitation for the region. The third layer

(Priors) consists of the prior distributions of the parameters that control the latent process.

The inference for the parameters in our models θ given the stations data Z(x) comes from the Bayes

rule:

p(θ|Z(x)) ∝ p(Z(x)|θ)p(θ)

where p denotes a probability density. Based on the conditional distribution of our hierarchical model,

we can get:

p(θ|Z(x)) ∝ p1(Z(x)|θ1)p2(θ1|θ2)p3(θ2)

where pi is the density associated with level i of the hierarchical model and depends on parameters θi.

Based on the equation above, we can obtain the posterior distributions of σ(x), ξ(x), and ζ(x) by

using MCMC algorithms. Then, the return level posterior distribution as well as the return level maps

can be produced accordingly.
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