Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

Introduction

Theory and Methods

Asymptotic Models Threshold Models

Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook

# Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

April 28, 2014

イロン イヨン イヨン

э

# Table of Contents

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

#### Introduction

Theory and Methods

Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook

### 1 Introduction

Theory and Methods

Asymptotic Models

Threshold Models

### Application

- Simulation of data from normal distribution
- Application in stock market
- Application in Hong Kong climate data

### Summary and Outlook

### Introduction

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

#### Introduction

Theory and Methods

Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook

- Extreme Event: event occurring very rarely, such as the 100-year floor.
- We need the Extreme Event Modelling techniques to know what the extreme levels can be within a certain period of time.

- $\blacksquare$  For example, the past 10 years of data  $\rightarrow$  predict how large the 100-year flood can be
- Two Methods available
  - **1** Block Maxima Method
  - 2 Threshold Method
- Application to real data
  - 1 Dow Jones Index data
  - 2 Hong Kong climate data

Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

#### Introduction

Theory and Methods

Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook The models introduced later focuses on the statistical behavior of

$$M_n = \max\{X_1, X_2, \dots, X_n\},\$$

where  $X_1, X_2, ..., X_n$ , is a sequence of independent random variables having a common distribution function F.

- In Applications, the X<sub>i</sub> usually represents values of a process measured on a regular time-scale – perhaps hourly measurements of sea-level, or daily mean temperatures
- *M<sub>n</sub>* represents the maximum of the process over *n* time units of observation.
- If *n* is the number of observations in a year, then  $M_n$  corresponds to the annual maximum.

・ロン ・回 と ・ ヨ と ・ ヨ と

# Table of Contents

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

#### Introduction

#### Theory and Methods

Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook

### 1 Introduction

2 Theory and Methods

- Asymptotic Models
   Threshold Models
- Application
  - Simulation of data from normal distribution
  - Application in stock market
  - Application in Hong Kong climate data

### Summary and Outlook

# Table of Contents

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

Introduction

Theory and Methods

#### Asymptotic Models

Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook

### 1 Introduction

2 Theory and Methods
 Asymptotic Models
 Threshold Models

### Application

- Simulation of data from normal distribution
- Application in stock market
- Application in Hong Kong climate data

### Summary and Outlook

### Extremal Types Theorem

#### Theorem

If there exist sequences of constants  $\{a_n\}$  and  $\{b_n\}$  such that

$$P\left(rac{M_n-b_n}{a_n}\leq z
ight)
ightarrow {\sf G}\left(z
ight)$$
 as  $n
ightarrow\infty$ 

Introduction

Extreme

Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

Theory and Methods

#### Asymptotic Models

Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook where G is a non-degenerate distribution function, then G belongs to one of the following families:

$$G(z) = \exp\{-\exp\left[-\left(\frac{z-b}{a}\right)\right]\}$$

- 11

$$G(z) = \begin{cases} 0 & \text{if } z \le b; \\ \exp\{-\left(\frac{z-b}{a}\right)^{-\alpha}\} & \text{if } z > b. \end{cases}$$

- 111

$$G(z) = \begin{cases} \exp\{-\left(\frac{z-b}{a}\right)^{-\alpha}\} & \text{if } z \le b; \\ 0 & \text{if } z > b. \end{cases}$$

for parameters a > 0, b and, in the case of families II and III,  $\alpha > 0$ . Livei WuSupervisor: Dr. Xiang Zhou Extreme Event Modelling

C

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

#### Introductior

Theory and Methods

#### Asymptotic Models

Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook Collectively, these three classes of distribution are termed the extreme value distributions, with types I, II and III widely known as the Gumbel, Fréchet and Weibull families respectively.

э

an extreme value analog of the central limit theorem.

### The Generalized Extreme Value Distribution

Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

Introduction

Theory and Methods

Asymptotic Models

Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook

### Theorem

If there exist sequences of constants  $\{a_n>0\}$  and  $\{b_n\}$  such that

$$P\left(\frac{M_n-b_n}{a_n}\leq z\right) \to G(z) \text{ as } n \to \infty$$
 (1)

イロト イポト イヨト イヨト

for a non-degenerate distribution function G, then G is a member of the GEV family

$$G(z) = \exp\left\{-\left[1+\xi\left(\frac{z-\mu}{\sigma}\right)\right]^{-1/\xi}\right\}$$

defined on the set  $\{z : 1 + \xi(z - \mu)/\sigma > 0\}$ , where  $-\infty < \mu < \infty$ ,  $\sigma > 0$  and  $-\infty < \xi < \infty$ .

# Modelling extremes using Block Maxima

Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

Introduction

Theory and Methods

Asymptotic Models

Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook A series of independent observations  $X_1, X_2$ ...are blocked into sequences of observations of length n, for some large value of *n*, generating a series of block maxima,  $M_{n,1}, ..., M_{n,m}$ , say, to which the GEV distribution can be fitted.

- Return Period
- Return Level

 $z_p$  is the return level associated with the return period 1/p, which means the level  $z_p$  is expected to be exceeded on average once every 1/p years. Define  $y_p = -log(1-p)$ , then we have

$$z_{p} = \begin{cases} \mu - \frac{\sigma}{\xi} \left[ 1 - y_{p}^{-\xi} \right], & \text{for } \xi \neq 0; \\ \mu - \sigma \log y_{p}, & \text{for } \xi = 0. \end{cases}$$

# Return Level Plot

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

Introduction

Theory and Methods

Asymptotic Models

Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook The **return level plot** is the graph in which if  $Z_p$  is plotted against  $y_p$  on a logarithmic scale.

・ロト ・同ト ・ヨト ・ヨト

э

- If  $\xi = 0$ , the plot is linear.
- If  $\xi < 0$ , the plot is convex with asymptotic limit as  $p \to 0$  at  $\mu \sigma/\xi$ .
- If  $\xi > 0$ , the plot is concave and has no finite bound.

# Block Maxima Method

Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

Introductior

Theory and Methods

Asymptotic Models

Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook **1** Blocking the data into blocks of equal length. (Trade-off between bias and variance) **2** Fitting the GEV to the set of block maxima  $Z_1, ..., Z_m$ .

**3** Obtaining the log-likelihood for the GEV parameters. When  $\xi \neq 0$ ,

$$I(\mu, \sigma, \xi) = -m\log(\sigma) - (1+1/\xi) \sum_{i=1}^{m} \log\left[1 + \xi\left(\frac{z_i - \mu}{\sigma}\right)\right] - \sum_{i=1}^{m} \left[1 + \xi\left(\frac{z_i - \mu}{\sigma}\right)\right]^{(-1/\xi)},$$
(2)

provided that

$$1 + \xi \left(\frac{z_i - \mu}{\sigma}\right) > 0, \forall i = 1, ..., m$$
(3)

イロン イヨン イヨン

э

4 Maximization of the equation with respect to the parameter vector (μ, σ, ξ) leads to the maximum likelihood estimate of the parameters.

5 Obtaining the maximum likelihood estimate of  $z_p$  for the 1/p return level.

6 Using the delta method to obtain the variance of the maximum likelihood estimate

$$Var(\hat{z_p}) \approx \nabla z_p^T V \nabla z_p$$

$$\begin{aligned} \nabla z_{\rho}^{T} &= \left[ \begin{array}{cc} \frac{\partial z_{\rho}}{\partial \mu} & \frac{\partial z_{\rho}}{\partial \sigma} & \frac{\partial z_{\rho}}{\partial \xi} \end{array} \right] \\ &= \left[ \begin{array}{cc} 1 & -\xi^{-1} \left( 1 - y_{\rho}^{-\xi} \right) & \sigma \xi^{-2} \left( 1 - y_{\rho}^{-\xi} \right) - \sigma \xi^{-1} y_{\rho}^{-\xi} \log y_{\rho} \end{array} \right] \end{aligned}$$

evaluated at  $(\hat{\mu}, \hat{\sigma}, \hat{\xi})$ .

Liwei WuSupervisor: Dr. Xiang Zhou Extr

Extreme Event Modelling

# Modelling Checking

Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

Introduction

Theory and Methods

Asymptotic Models

Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook  Probability Plot: a comparison of the empirical and fitted distribution functions

$$\left\{\left(\tilde{G}\left(z_{(i)}\right),\hat{G}\left(z_{(i)}\right)\right),i=1,...,m\right\}$$

$$\left\{ \left( \hat{G}^{-1}\left( i/(m+1)
ight) ,z_{i}
ight) ,i=1,...,m
ight\}$$

 Return Level Plot summarises the fitted model and consists of the locus of points

$$\{(\log y_p, \hat{z}_p), 0$$

Confidence intervals can be added to the plot to increase its informativeness. Empirical estimates of the return level function can also be added, enabling the return level plot to be used as a model diagnostic.

イロト イポト イヨト イヨト

э

 Density Plot: a comparison of the probability density function of a fitted model with a histogram of the data

We mainly check whether the probability plot and the quantile plot are approximately linear.

# GEV distribution for Minima

Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

Introduction

Theory and Methods

Asymptotic Models

Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook

#### Definition

$$\tilde{M}_n = \min\{X_1, ..., X_n\}$$

and

$$\tilde{\mu}=-\mu$$

#### Theorem

If there exist sequences of constants  $\{a_n > 0\}$  and  $\{b_n\}$  such that

$$P\left(\frac{\tilde{M}_n - b_n}{a_n} \le z\right) \to \tilde{G}(z) \text{ as } n \to \infty$$
(4)

for a non-degenerate distribution function  $\tilde{G}$ , then  $\tilde{G}$  is a member of the GEV family of distributions for minima:

$$\tilde{G}(z) = 1 - \exp\left\{-\left[1 - \xi\left(\frac{z - \tilde{\mu}}{\sigma}\right)\right]^{-1/\xi}\right\}$$

defined on the set  $\{z : 1 + \xi(z - \tilde{\mu})/\sigma > 0\}$ , where  $-\infty < \tilde{\mu} < \infty$ ,  $\tilde{\sigma} > 0$  and  $-\infty < \xi < \infty$ .

# Table of Contents

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

Introductior

Theory and Methods

Asymptotic Models

Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook

### 1 Introduction

Theory and Methods
 Asymptotic Models
 Threshold Models

### Application

- Simulation of data from normal distribution
- Application in stock market
- Application in Hong Kong climate data

### Summary and Outlook

### Motivation

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

Introductior

Theory and Methods

Asymptotic Models

Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook Modelling only block maxima is a wasteful approach to extreme value analysis if other data on extremes are available. Therefore, if an entire time series of, say, hourly or daily observations is available, then we can make better use of the data by avoiding altogether the procedure of blocking. Let  $X_1, X_2, \ldots$  be a sequence of independent random variables with common distribution function F, and let

 $M_n = \max\{X_1, ..., X_n\}$ 

It is natural to regard those of the  $X_i$  exceeding some high threshold u as extreme events.

イロト イポト イヨト イヨト

э

### The Generalized Pareto Distribution

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

Introductio

Theory and Methods

Asymptotic Models

Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook

#### Theorem

Denote an arbitrary term in the  $X_i$  sequence by X, and suppose that F satisfies Theorem 2.2, so that for large n,

$$P(M_n \leq z) \approx G(z),$$

where

$${\cal G}(z) = \exp\left\{-\left[1+\xi\left(rac{z-\mu}{\sigma}
ight)
ight]^{-1/\xi}
ight\}$$

for some  $\mu, \sigma > 0, \xi$ . Then, for large enough u, the distribution function of (X - u), conditional on X > u, is approximately

$$H(y) = 1 - \left(1 + \frac{\xi y}{\tilde{\sigma}}\right)^{-1/\xi}$$
(5)

ヘロン 人間 とくほ とくほ とう

defined on  $\{y : y > 0 \text{ and } (1 + \xi y / \tilde{\sigma}) > 0\}$ , where

$$\tilde{\sigma} = \sigma + \xi(u - \mu)$$

Liwei WuSupervisor: Dr. Xiang Zhou Extreme

Extreme Event Modelling

# Threshold Selection

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

Introduction

Theory and Methods

Asymptotic Models

Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook The issue of threshold choice is analogous to the choice of block size in the block maxima approach

- too low a threshold is likely to violate the asymptotic basis of the model, leading to bias
- too high a threshold will generate few excesses with which the model can be estimated, leading to high variance.

イロト イポト イヨト イヨト

- Two methods for Threshold Selection
  - Mean residual life plot
  - Estimate the model at a range of thresholds.

# Model Checking

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

#### Introduction

Theory and Methods

Asymptotic Models

Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook After obtaining the proper threshold of the fitted GPD, we need to assess the quality of the fitted generalized Pareto model. It can be done using probability plots, quantile plots, return level plots, and density plots.

Note that the return level plot is given by  $\{(m, \hat{x}_m)\}$  for large values of m, where

$$\hat{x}_m = u + rac{\hat{\sigma}}{\hat{\xi}} \left[ \left( m \hat{\zeta}_u 
ight)^{\hat{\xi}} - 1 
ight]$$

and

$$\hat{\zeta}_u = \Pr\{X > u\}$$

# Table of Contents

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

#### Introductior

Theory and Methods

Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook

### 1 Introduction

Theory and MethodsAsymptotic ModelsThreshold Models

### 3 Application

- Simulation of data from normal distribution
- Application in stock market
- Application in Hong Kong climate data

### Summary and Outlook

# Table of Contents

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

Introduction

Theory and Methods

Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook

### 1 Introduction

Theory and Methods

Asymptotic Models
Threshold Models

### 3 Application

Simulation of data from normal distribution

Application in stock market

Application in Hong Kong climate data

### Summary and Outlook

# Simulation of data from normal distribution

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

ntroduction

Theory and Methods

Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook Consider the data generated from R

 $x_{1,1}, x_{1,2}, \dots, x_{1,n}, x_{2,1}, x_{2,2}, \dots, x_{2,n}, x_{3,1}, \dots, x_{m,1}, \dots, x_{m,n}$  from standard normal distribution:  $\mathcal{N}(0, 1)$ .

- Dividing the data into m blocks, we have n data points in each block.
- We now simplify notation by denoting the block maxima  $Z_1, Z_2, ..., Z_m$ . These are assumed to be independent variables from a GEV distribution whose parameters are to be estimated given that n is large enough.

イロト イポト イヨト イヨト

- In this specific case, we take m = 200, n = 500.
- Fitting against GEV distribution vs. Gumbel distribution.

# GEV distribution



[2.357150, 2.35397],  $\delta = 0.3210$ , with a 95% confidence interval [0.286984, 0.3562161],  $\xi = -0.08799757$ , with a 95% confidence interval [-0.1778897, 0.001894544].

Liwei WuSupervisor: Dr. Xiang Zhou

Extreme Event Modelling

э

э

# Gumbel distribution



Liwei WuSupervisor: Dr. Xiang Zhou Extreme Event Modelling

### Conclusion

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

#### Introduction

Theory and Methods

Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook

- Notice that the confidence interval of ξ contains 0, which means the Gumbel Distribution could be a more accurate model in the entire GEV family.
- Confidence intervals for return levels obtained by fitting against Gumbel Distribution are narrower than those obtained by fitting against a member of general GEV distribution.
- For the specific example above, estimates and confidence intervals for returns levels can be obtained. For example, when p = 1/10, the estimate for the 10-year return level  $\hat{z}_{0.1}$  is 3.536803, with a 95% confidence interval [3.453434, 3.641219], and similarly when p = 1/100, the estimate for the 100-year return level  $\hat{z}_{0.01}$  is 4.136239, with a 95% confidence interval [3.955557, 4.447778].

イロト イポト イヨト イヨト

# Table of Contents

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

Introductior

Theory and Methods

Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution

#### Application in stock market Application in

Hong Kong climate data

Summary and Outlook

### 1 Introduction

Theory and Methods

Asymptotic Models
Threshold Models

### 3 Application

- Simulation of data from normal distribution
- Application in stock market
- Application in Hong Kong climate data

### Summary and Outlook

### Application in stock market

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

#### Introduction

Theory and Methods

Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution

#### Application in stock market

Hong Kong climate data

Summary and Outlook

- Sometimes people are interested in the extreme event in stock markets, such as how large the daily loss percentage would be within 100 years. Such problems can be modelled and solved using Threshold Method from the Extreme Event Modelling.
- daily Dow Jones Index data from 1896-05-26 to 2013-08-02, totalling 31960 data points
- After inputting the csv file containing the data into R, we can use the existing R package "ismev" and "extRemes" to choose the proper threshold, fit the data into the Generalized Pareto Distribution (GPD), and obtain the 100-year return level of daily loss percentage in stock market with the corresponding 95% confidence interval.

イロト イポト イヨト イヨト

### Data points Plot



Liwei Wu Supervisor: Dr. Xiang Zhou

Introductior

Theory and Methods

Models Threshold Models

#### Application

Simulation o data from normal distribution

# Application in stock market

Hong Kong climate data

Summary and Outlook



Figure : data points of daily percentage change of Dow Jones Index

э

Liwei WuSupervisor: Dr. Xiang Zhou Extreme Event Modelling

# Selecting the proper threshold: First Method

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

#### Introduction

#### Theory and Methods

Asymptotic Models Threshold Models

#### Application

Simulation o data from normal distribution

#### Application in stock market Application in Hong Kong

Summary and

#### The first method is to select a proper threshold such that the mean residue life plot should be approximately linear above the selected proper threshold u<sub>0</sub>.

■ In the mean residue life plot below, the information above the daily loss percentage u = 10 is not very accurate due to very few points (actually only 5) with daily loss greater than 10%. Therefore, we should ignore that part of the plot and conclude that the proper threshold u<sub>0</sub> should satisfy u<sub>0</sub> ≥ 3, since it is easy to see that the plot is approximately linear above u = 3.





Image: 1

# Selecting the proper threshold: Second Method

#### Extreme Event Modelling

- Liwei Wu Supervisor: Dr. Xiang Zhou
- Introduction
- Theory and Methods
- Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution

#### Application in stock market Application in

- Hong Kong climate data
- Summary and Outlook

• To further explore what the proper threshold should be, the second method is used: look for the stability of parameters  $\sigma^*$  and  $\xi$  while varying the threshold of the fitted GPD.

イロト イポト イヨト イヨト

From the plot on the next slide, we can see that the estimated parameters are more or less stable when  $u \ge 5$ . Therefore, the selected threshold of u = 5 appears reasonable.

### Selecting the proper threshold: Second Method

2



# Obtaining the 100-year return level of daily loss percentage

Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

Introduction

Theory and Methods

Asymptotic Models Threshold Models

Application

Simulation o data from normal distribution

#### Application in stock market Application in Hong Kong

Summary and Outlook Fit the data points into the GPD with the selected threshold u = 5
 Obtain the maximum likelihood estimates in this case:

$$\left(\hat{\sigma},\hat{\xi}
ight)=(1.2694261,0.3737744)$$

with a corresponding maximised log-likelihood of -143.4933. Standard errors for  $\hat{\sigma}$  and  $\hat{\xi}$  are 0.2096583 and 0.1327465 respectively.

- **3** Obtain the 100-year return level  $\hat{x}_m$ :  $\hat{x}_m = 20.710722$  and  $Var(\hat{x}_m) = 27.80601$ , leading to a 95% confidence interval for  $x_m$  of [10.375366, 31.04608].
- **4** Draw the diagnostic plots for model checking (shown on next slide)

# Model Checking





### Conclusion

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

#### Introduction

- Theory and Methods
- Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution

#### Application in stock market Application in

Hong Kong climate data

Summary and Outlook

- we are 95% confident to say that the maximum daily loss percentage within a hundred years will fall between 10.375366 and 31.04608.
- perhaps some precautions can be done to get prepared for the possible stock market crash given that we already know how large the maximum daily loss percentage can be within a hundred years.
- In particular, the same statistical method used here for Dow Jones Index can be applied in other stock market around the world, such as Hong Kong, China, Japan and so on. The comparisons of the 100-year return level among these different stock markets would be interesting. In addition, the analysis of data at financial turmoil period could reveal extreme patterns of financial market under huge uncertainty.

# Table of Contents

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

Introductior

Theory and Methods

Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook

### 1 Introduction

Theory and Methods
Asymptotic Models
Threshold Models

### 3 Application

Simulation of data from normal distributionApplication in stock market

Application in Hong Kong climate data

### Summary and Outlook

# Application in Hong Kong climate data

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

#### Introduction

- Theory and Methods
- Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook

- It is a long tradition to use the extreme value analysis to study climate and meteorology problem. Here we study the daily maximum temperature in Hong Kong.
- the Hong Kong climate data is publicly available from the Hong Kong Observatory website: http://www.weather.gov.hk/cis/data\_e.htm.
- we will only focus on the maximum air temperature, because our goal is to explore how high the maximum air temperature can be within a hundred years and within a hundred and fifty years respectively.

# Threshold Method

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

#### ntroduction

- Theory and Methods
- Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook

- we have to take into account the non-stationarity of the data points, since obviously the daily maximum air temperature will depend on the month of the year and tend to cluster together
- To overcome the difficulty, we will only select the data points from June, July and August, since by observation only the data points in these three months will likely become the maximum air temperature throughout the year. We draw the plot of the data points.
- We obtained the daily maximum air temperature data in June, July and August from 1997 till 2013, totalling 1564 data points. We can use the existing R package "ismev" and "extRemes" to choose the proper threshold, fit the data into the Generalized Pareto Distribution (GPD), and obtain the 100-year and 150-year return level of daily maximum air temperature in Hong Kong with the corresponding 95% confidence interval.

イロト イポト イヨト イヨト



Figure : data points of daily maximum temperature of Hong Kong climate data

Liwei WuSupervisor: Dr. Xiang Zhou

Extreme Event Modelling

э

# Selecting the proper threshold: First Method

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

#### Introduction

#### Theory and Methods

Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in

#### Hong Kong climate data

Summary and Outlook

- The first method is to select a proper threshold such that the mean residue life plot should be approximately linear above the selected proper threshold u<sub>0</sub>.
- In the mean residue life plot below, it is approximately linear above u = 32. Therefore, we can conclude that the proper threshold u<sub>0</sub> should satisfy u<sub>0</sub> ≥ 32.





A 3 >

# Selecting the proper threshold: Second Method

#### Extreme Event Modelling

- Liwei Wu Supervisor: Dr. Xiang Zhou
- Introduction
- Theory and Methods
- Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in

Application in Hong Kong climate data

Summary and Outlook

- To further explore what the proper threshold should be, the second method is used: look for the stability of parameters σ\* and ξ while varying the threshold of the fitted GPD.
- From the plot on the next slide, we can see that the estimated parameters are more or less stable when  $u \ge 32$ . Therefore, the selected threshold of u = 32 appears reasonable.

イロト イポト イヨト イヨト

### Selecting the proper threshold: Second Method



Liwei WuSupervisor: Dr. Xiang Zhou

#### Extreme Event Modelling

< ∃ >

2

# Obtaining the 100-year return level of daily loss percentage

Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

Introduction

Theory and Methods

Asymptotic Models Threshold Models

Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook Fit the data points into the GPD with the selected threshold u = 32
 Obtain the maximum likelihood estimates in this case:

 $\left(\hat{\sigma},\hat{\xi}
ight)=$  (1.0722162, -0.2809016)

with a corresponding maximised log-likelihood of -449.7361. Standard errors for  $\hat{\sigma}$  and  $\hat{\xi}$  are 0.05182593 and 0.02684719 respectively.

- **3** Obtain the 100-year return level  $\hat{x}_m$ :  $\hat{x}_m = 35.55201$  and  $Var(\hat{x}_m) = 0.02606413$ , leading to a 95% confidence interval for  $x_m$  of [35.23559, 35.86844].
- 4 Obtain the 150-year return level  $\hat{x}_m$ :  $\hat{x}_m = 35.58055$ , and a 95% confidence interval for  $x_m$  of [35.25327, 35.90782].
- 5 Draw the diagnostic plots for model checking (shown on next slide)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

# Model Checking



### Return level plot



### Conclusion

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

#### Introductior

Theory and Methods

Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong

climate data

Summary and Outlook

- we are 95% confident to say that the maximum daily loss percentage within a hundred years will fall between 35.23559 and 35.86844.
- we are 95% confident to say that the maximum air temperature within a hundred and fifty years will fall between 35.25327 and 35.90782.
- Although the range is pretty wide, we can still conclude that the maximum air temperature will most likely never reach 36 degrees in Hong Kong even within 150 years. Therefore, we know what we are up to and take some precautionary measures in the event of extremely high air temperature.

( ) < </p>

# Table of Contents

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

Introductior

Theory and Methods

Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook

### 1 Introduction

Theory and MethodsAsymptotic Models

Threshold Models

### Application

- Simulation of data from normal distribution
- Application in stock market
- Application in Hong Kong climate data

### 4 Summary and Outlook

# Summary

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

#### Introduction

Theory and Methods

Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook

- we discussed the basic theory and methods of Extreme Value Modelling. Both the Generalized Extreme Value (GEV) distribution and the Generalized Pareto Distribution (GPD) are introduced.
- two methods to model the Extremes, i.e. the Block Maxima method and the Threshold method.
- we applied these methods to fit the data to obtain the corresponding return level.
  - we applied the Block Maxima Method to the simulated normal data.
  - we applied the Threshold Method to the Dow Jones Index data and the Hong Kong climate data and reached informative conclusion based on the return levels we obtained.

イロト イポト イヨト イヨト

э

# Outlook

#### Extreme Event Modelling

Liwei Wu Supervisor: Dr. Xiang Zhou

#### Introduction

- Theory and Methods
- Asymptotic Models Threshold Models

#### Application

Simulation of data from normal distribution Application in stock market Application in Hong Kong climate data

Summary and Outlook

- In the Hong Kong climate data case, we assume that the data are obtained from one station of the same location. However, in real world application, it is possible that the data are obtained from a number of stations of different locations.
- If so, we can use the Bayesian hierarchical model for spatial extremes to produce a map characterising extreme behaviour across a geographic region.
- There are three layers in both of our hierarchal models: Data Layer, Process Layer, & Priors

### $p(\theta|Z(x)) \propto p_1(Z(x)|\theta_1)p_2(\theta_1|\theta_2)p_3(\theta_2)$

3

 Based on the equation above, we can obtain the posterior distributions of σ(x), ξ(x), and ζ(x) by using MCMC algorithms. Then, the return level posterior distribution as well as the return level maps can be produced accordingly.