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MATRIX EXTENSION WITH SYMMETRY AND ITS APPLICATION
TO SYMMETRIC ORTHONORMAL MULTIWAVELETS*

BIN HANT AND XIAOSHENG ZHUANGH

Abstract. Let P be an rx s matrix of Laurent polynomials with symmetry such that P(z)P*(z) =
L. for all z € C\{0} and the symmetry of P is compatible. The matrix extension problem with symme-
try is to find an s X s square matrix P, of Laurent polynomials with symmetry such that [I,, 0]P. = P
(that is, the submatrix of the first r rows of P. is the given matrix P), P, is paraunitary satisfying
Pe(2)P%(z) = Is for all z € C\{0}, and the symmetry of P. is compatible. Moreover, it is highly
desirable in many applications that the support of the coefficient sequence of P, can be controlled
by that of P. In this paper, we completely solve the matrix extension problem with symmetry by
constructing such a desired matrix P from a given matrix P. Furthermore, using a cascade structure,
we obtain a complete representation of any r X s paraunitary matrix P having compatible symmetry,
which in turn leads to a construction of a desired matrix P from a given matrix P. Matrix exten-
sion plays an important role in many areas such as wavelet analysis, electronic engineering, system
sciences, and so on. As an application of our general results on matrix extension with symmetry, we
obtain a satisfactory algorithm for constructing symmetric orthonormal multiwavelets by deriving
high-pass filters with symmetry from any given orthogonal low-pass filters with symmetry. Several
examples of symmetric orthonormal multiwavelets are provided to illustrate the results in this paper.
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1. Introduction and main results. It is well known in wavelet analysis that
the construction of orthonormal wavelets and multiwavelets can be formulated as a
matrix extension problem; see [1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 16, 18, 17]. The matrix
extension problem also plays a fundamental role in many areas such as electronic
engineering, system sciences, mathematics, etc. We mention only a few references
here on this topic; see [1, 2, 3, 5, 6, 7, 8, 10, 13, 15, 16, 17, 20, 21, 22]. In order to
state the matrix extension problem and our main results on this topic, let us introduce
some notation and definitions first.

Let p(2) = > ,cze2”, 2 € C\{0} be a Laurent polynomial with complex coeffi-
cients pr € C for all k € Z. We say that p has symmetry if its coeflicient sequence
{pr }rez has symmetry; more precisely, there exist ¢ € {—1,1} and ¢ € Z such that

(1.1) Pe—k = EPk VEkeZ.

If e = 1, then p is symmetric about the point ¢/2; if ¢ = —1, then p is antisymmetric
about the point ¢/2. Symmetry of a Laurent polynomial can be conveniently expressed
using a symmetry operator S defined by

_p(») ;
(1.2) Sp(2) 1= 75 € C\{0}.
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When p is not identically zero, it is evident that (1.1) holds if and only if Sp(z) = ez°.
For the zero polynomial, it is very natural that SO can be assigned any symmetry
pattern; that is, for every occurrence of SO appearing in an identity in this paper, SO
is understood to take an appropriate choice of £z¢ for some ¢ € {—1,1} and ¢ € Z so
that the identity holds. If P is an r X s matrix of Laurent polynomials with symmetry,
then we can apply the operator S to each entry of P; that is, SP is an r X s matrix
such that [SP];r := S([P];x), where [P];, denotes the (j, k)-entry of the matrix P
throughout the paper.

For two matrices P and Q of Laurent polynomials with symmetry, even though
all the entries in P and Q have symmetry, their sum P + Q, difference P — Q, or
product PQ, if well defined, generally may not have symmetry anymore. This is one
of the difficulties for matrix extension with symmetry. In order for P + Q or PQ to
possess some symmetry, the symmetry patterns of P and Q should be compatible. For
example, if SP = SQ (that is, both P and Q have the same symmetry pattern), then
indeed P + Q has symmetry and S(P £ Q) = SP = SQ. In the following, we discuss
the compatibility of symmetry patterns of matrices of Laurent polynomials. For an
r X s matrix P(z) = Y, o, Pe2", throughout the paper we denote

(1.3) P(z):=Y Piz" with Pf:=PF,, kez,
kEZ

where ET denotes the transpose of the complex conjugate of the constant matrix Py,
in C. We say that the symmetry of P is compatible or P has compatible symmetry if

(1.4) SP(z) = (8601)" (2)S02(=)

for some 1 x r and 1 x s row vectors #; and 3 of Laurent polynomials with symmetry.
For an r x s matrix P and an s x ¢t matrix Q of Laurent polynomials, we say that
(P, Q) has mutually compatible symmetry if

(1.5) SP(2) = (86,)*(2)S0(2) and SQ(z) = (S6)*(2)S=(z)

for some 1 xr, 1x s, 1xtrow vectors 61,6, 0> of Laurent polynomials with symmetry.
If (P, Q) has mutually compatible symmetry as in (1.5), then it is easy to verify that
their product PQ has compatible symmetry and in fact S(PQ) = (§601)*S0s.

For a matrix of Laurent polynomials, another important property is the support
of its coefficient sequence. For P =Y, , P,z" such that P, = 0 for all k € Z\[m, n]
with P, # 0 and P,, # 0, we define its coefficient support to be coeffsupp(P) := [m, n]
and the length of its coefficient support to be |coeffsupp(P)| := n — m. In particular,
we define coeffsupp(0) := (), the empty set, and |coeffsupp(0)| := —oo. Also, we use
coeff(P, k) := Py to denote the coefficient matrix (vector) Py of z¥ in P. In this paper,
0 always denotes a general zero matrix whose size can be determined in the context.

The Laurent polynomials that we shall consider in this paper have their coeffi-
cients in a subfield F of the complex field C. Let F denote a subfield of C such that F
is closed under the operations of complex conjugate of FF and square roots of positive
numbers in F. In other words, the subfield F of C satisfies the following properties:

(1.6) zeF and JyeF Vz,yeF with y>0.

Two particular examples of such subfields F are F = R (the field of real numbers)
and F = C (the field of complex numbers). A nontrivial example is the field of all
algebraic numbers, i.e., the algebraic closure Q of the rational numbers Q.
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Now, we introduce the general matrix extension problem with symmetry. Through-
out the paper, r and s denote two positive integers such that 1 < r < s. Let P be an
r X s matrix of Laurent polynomials with coefficients in F such that P(z)P*(z) = I, for
all z € C\{0} and the symmetry of P is compatible, where I, denotes the r x r iden-
tity matrix. The matrix extension problem with symmetry is to find an s X s square
matrix P, of Laurent polynomials with coefficients in F and with symmetry such that
[I-,0]P. = P (that is, the submatrix of the first r rows of P, is the given matrix P),
the symmetry of P, is compatible, and P.(z)P%(z) = I, for all z € C\{0} (that is, P,
is paraunitary). Moreover, in many applications, it is often highly desirable that the
coefficient support of P, can be controlled by that of P in some way.

In this paper, we study this general matrix extension problem with symmetry
and we completely solve this problem as follows.

THEOREM 1. Let F be a subfield of C such that (1.6) holds. Let P be an r x s
matriz of Laurent polynomials with coefficients in F such that the symmetry of P is
compatible and P(z)P*(z) = I for all z € C\{0}. Then there exists an s X s square
matrixz P, which can be constructed by Algorithm 2 in section 3 from the given matriz
P, of Laurent polynomials with coefficients in F such that

(i) [Ir,0]P. = P; that is, the submatriz of the first r rows of P, is P;

(ii) Pe is paraunitary: P.(2)P:(z) = I, for all z € C\{0};
(iii) the symmetry of P. is compatible;
(iv) the coefficient support of P, is controlled by that of P in the following sense:

(1L7)  Jeoeffsupp([Pel;)| < max |coefisupp(Plus), 1<k <s.

Theorem 1 on matrix extension with symmetry is built on a stronger result which
represents any given paraunitary matrix having compatible symmetry by a simple
cascade structure. The following result leads to a proof of Theorem 1 and completely
characterizes any paraunitary matrix P in Theorem 1.

THEOREM 2. Let P be an r x s matriz of Laurent polynomials with coefficients in
a subfield F of C such that (1.6) holds. Then P(z)P*(2) = I for all z € C\{0} and
the symmetry of P is compatible as in (1.4) if and only if there exist s X s matrices
Po,...,Ps11 of Laurent polynomials with coefficients in F such that

(i) P can be represented as a product of Py, ..., Pyy1:

(18) P(Z) = [IT,O]PJ+1(Z)PJ(Z)"'Pl(Z)PQ(Z);

(i) P;, 1 <j < J, are elementary: P;(2)P7(2) = I5 and coeffsupp(P;) C [-1,1];

(ili) (Pj41,P;) has mutually compatible symmetry for all 0 < j < J;

(iv) Po = Uy, and P iy = diag(Use,, Is—), where Use,, Use, are products of a

permutation matriz with a diagonal matriz of monomials, as defined in (3.2);

(v) J < maxigmsri<ngs| [coeflsupp([Plm,n)|/2], where [-] is the ceiling func-

tion.

The representation in (1.8) (without symmetry) is often called the cascade struc-
ture in the engineering literature; see [14, 15, 21]. In the context of wavelet analysis,
matrix extension without symmetry was discussed by Lawton, Lee, and Shen in their
interesting paper [16] and a simple algorithm was proposed there to derive a desired
matrix P. from a given row vector P of Laurent polynomials without symmetry. In
[21], Vaidyanathan studied the matrix extension without symmetry for filter banks
with the perfect reconstruction property. References [16, 21] mainly deal with the
special case that P is a row vector (that is, 7 = 1 in our case) without symmetry, and
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the coefficient support of the derived matrix P, indeed can be controlled by that of
P. The algorithms in [16, 21] for the special case r = 1 can be employed to handle a
general r X s matrix P without symmetry; see [16, 19, 21] for detail. However, for the
general case r > 1, it is no longer clear whether the coefficient support of the derived
matrix P, obtained by the algorithms in [16, 21] can still be controlled by that of P.

Several special cases of matrix extension with symmetry have been considered in
the literature. For F = R and r = 1, matrix extension with symmetry was considered
in [17]. For r = 1, matrix extension with symmetry was studied in [8] and a simple
algorithm is given there. In the context of wavelet analysis, several particular cases
of matrix extension with symmetry related to the construction of wavelets and mul-
tiwavelets have been investigated in [2, 7, 8, 10, 14, 15, 17]. However, for the general
case of an r X s matrix, the approaches on matrix extension with symmetry in [8, 17]
for the particular case » = 1 cannot be employed to handle the general case. The
algorithms in [8, 17] are very difficult to generalize to the general case r > 1, partially
due to the complicated relations of the symmetry patterns between different rows of
P. For the general case of matrix extension with symmetry, it becomes much harder
to control the coefficient support of the derived matrix P., comparing with the special
case r = 1. Extra effort is needed in this case for deriving P. so that its coefficient
support can be controlled by that of P.

The contributions of this paper lie in the following aspects. First, we satisfactorily
solve the general matrix extension problem with symmetry for any r, s such that 1 <
r < s. More importantly, we obtain a complete representation of any r X s paraunitary
matrix P having compatible symmetry with 1 < r < s. This representation leads to
a step-by-step algorithm for deriving a desired matrix P, from a given matrix P.
Second, we obtain an optimal result in the sense of (1.7) on controlling the coefficient
support of the desired matrix P, derived from a given matrix P by our algorithm.
This is of importance in both theory and application, since short support of a filter
or a multiwavelet is a highly desirable property and short support usually means a
fast algorithm and simple implementation in practice. Third, we introduce the notion
of compatibility of symmetry, which plays a critical role in the study of the general
matrix extension problem with symmetry for the multirow case (r > 1). Fourth, we
provide a complete analysis and a systematic construction algorithm for symmetric
orthonormal multiwavelets. Finally, most of the literature on the matrix extension
problem considers only Laurent polynomials with coefficients in the special field C
(see [8, 16]) or R (see [1, 17]). In this paper, our setting is under a general field F,
which can be any subfield of C satisfying (1.6).

The structure of this paper is as follows. In section 2, we shall discuss an appli-
cation of our main results on matrix extension with symmetry to the construction of
symmetric orthonormal multiwavelets in wavelet analysis (or the design of symmetric
filter banks in electronic engineering). Examples will be provided to illustrate our
algorithms. In section 3, we shall present a step-by-step algorithm which leads to
constructive proofs of Theorems 1 and 2. Finally, we shall prove Theorems 1 and 2
in section 4.

2. Application to symmetric orthonormal multiwavelets. In this section,
we shall discuss the application of our results on matrix extension with symmetry to
orthonormal multiwavelets with symmetry in wavelet analysis (or d-band symmetric
paraunitary filter banks in electronic engineering). In order to do so, let us introduce
some definitions first.

We say that d is a dilation factor if d is an integer with |d| > 1. Throughout this
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section, d denotes a dilation factor. For simplicity of presentation, we further assume
that d is positive, while multiwavelets and filter banks with a negative dilation factor
can be handled similarly by a slight modification of the statements in this paper.

Let F be a subfield of C such that (1.6) holds. A low-pass filter ag : Z — F™*"
with multiplicity r is a finitely supported sequence of r X r matrices on Z. The symbol
of the filter ag is defined to be ag(z) := 3,5 ao(k)z", which is a matrix of Laurent
polynomials with coefficients in F. Moreover, the d-band subsymbols of ag are defined
by agy(2) == Vd Y ,cza0(y + dk)2*, v € Z. We say that ag (or ag) is a d-band
orthogonal filter if

(2.1) Zao,V 2)aj(z) =1,  z€C\{0}.

For f € L1(R), the Fourier transform used in this paper is defined to be f(f) =
Jg f(z)e”™dz and can be naturally extended to La(R) functions. For a d-band
orthogonal low-pass filter ag, we assume that there exists an orthogonal d-refinable

function vector ¢ = [¢1,. .., ¢,]T associated with the low-pass filter ag, with compactly
supported functions ¢1, ..., ¢, in La(R) such that

(2.2) $(dE) = ao(e ")), EeR  with [$(0)] =

and

(2.3) (p(- — /¢x— d;v—d( ) keZ,

where § denotes the Dirac sequence such that 6(0) = 1 and §(k) = 0 for all k # 0.

To construct an orthonormal multiwavelet basis (or an orthogonal filter bank with
the perfect reconstruction property), one has to design high-pass filters ay, ..., aq—1 :
Z — F™*" such that the polyphase matrix

aoo(z) o+ agd-1(2)
(2.4) P(z) = o) a1
ad—1.0(2) -+ ad—1,d-1(2)

is paraunitary, that is, P(2)P*(z) = Iar, where each a,,;, is a subsymbol of a,, for
m,y = 0,...,d — 1, respectively. Symmetry of the filters in a filter bank is a very
desirable property in many applications. We say that the low-pass filter ag (or ag)
has symmetry if

(2.5) ao(z) = diag(e129, ..., 6,29 )ag(1/2)diag(e1 2=, ..., g2~ ")
for some €1,...,6, € {—1,1} and ¢1,...,¢, € R such that deg — ¢; € Z for all
£, =1,...,7. To design a symmetric filter bank with the perfect reconstruction

property, from a given d-band orthogonal low-pass filter ag, one has to construct
high-pass filters aq,...,aq—1 : Z — F"*" such that all of them have symmetry that
is compatible with the symmetry of ag in (2.5) and the polyphase matrix P in (2.4)
is paraunitary. Define multiwavelet function vectors ¢™ = [, ... ™]T associated
with the high-pass filters a,,, m=1,...,d — 1, by

(2.6) P(dE) = am(e 6)P(€), E€R,m=1,...,d—1
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It is well known that {v!,... 197!} generates an orthonormal multiwavelet basis in
Ly(R); that is, {d//2¢7"(d7 - —k) : j,k€Z;ym=1,....d—1; £ =1,...,7} is an
orthonormal basis of La(R). For example, see [3, 7, 9, 12, 18, 20] and the references
therein.

If ap has symmetry as in (2.5) and if 1 is a simple eigenvalue of ag(1), then it is
well known that the d-refinable function vector ¢ in (2.2) associated with the low-pass
filter ag has the following symmetry:

(2.7) $1(c1 —-) = €101, Pa(ca —-) = €202, ..., ¢r(cr —-) =Erdp.

Under the symmetry condition in (2.5), to apply Theorem 1, we first show that
there exists a suitable paraunitary matrix U acting on P,, := [a¢,0, . . ., a0,d—1] so that
P.,U has compatible symmetry. Note that P,, itself may not have any symmetry.

LEMMA 1. Let Py, := [ago,...,a0,d—1], where agpo,...,a0,d—1 are d-band sub-
symbols of a d-band orthogonal filter ag satisfying (2.5). Then there exists a dr x dr
paraunitary matric U such that P,,U has compatible symmetry.

Proof. From (2.5), we deduce that

(28)  [a0(2)]e; = 20552 fangy (2 ey Y =0, d =1, Li=1,...,m,
where 7, Q] ; € I':={0,...,d — 1} and R} ;, Q; ; are uniquely determined by
(2.9) deg —¢j —y=dR/; +Q); with R/, €Z, Q€T

Since dcy —c¢j € Z for all £,j = 1,...,r, we have ¢ —¢; € Z forall £, =1,...,r
and therefore, QZ ; is independent of £. Consequently, by (2.8), for every 1 < j < 7,
the jth column of the matrix ag., is a flipped version of the jth column of the matrix
a,q; - Let Kjy € Z be an integer such that |coeffsupp([ag:~]:,; + Zﬁj”y[ao;de_];)j” is

the smallest possible number. Define P := [by.o, . .., bo,a—1] as follows:
[205):.5 v= Qz,jﬂ
(210) [bO;'y]:,j = %([ao;v]g]’ + Zﬁij[aO;QZ,j]HJ‘)’ 7 < Qz,j’

%([30;7]% - Zﬁj’w[aO;sz]:J)v > QZJ"

where [ag;,].; denotes the jth column of ag,,. Let U denote the unique transform
matrix corresponding to (2.10) such that P := [bo.o,...,bo.a—1] = [200, - - -, 20,d—1]U.
It is evident that U is paraunitary and P = P, U. We now show that P has compatible

symmetry. Indeed, by (2.8) and (2.10),
(211) [Sbo;v]g’j = Sgn(sz _ ,\/)EéngRZ,j"l‘Kj,’Y’

where sgn(z) = 1 for # > 0 and sgn(z) = —1 for # < 0. By (2.9) and noting that @} ;
is independent of ¢, we have

[Sbow]f,j _ Eéé‘anzJ
[SbO;'v]nJ

forall 1 < ¢,n < r, which is equivalent to saying that P has compatible symmetry. d
Now, for a d-band orthogonal low-pass filter ag satisfying (2.5), we have the

following algorithm to construct high-pass filters aj,...,aq—1 such that they form a

symmetric paraunitary filter bank with the perfect reconstruction property.
ALGORITHM 1. Input an orthogonal d-band filter ag with symmetry as in (2.5).

Ce—Cn

_RY .
Rri = gpenz
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(1) Construct U as in (2.10) such that P := P, U has compatible symmetry:
SP = [e12% ... .27 T8O for some ki,...,k. € Z and some 1 x dr row
vector 6 of Laurent polynomials with symmetry.

(2) Derive P, as in Theorem 1 from P by Algorithm 2 (see section 3).

(3) Let P :=P.U*" =: (am;y)ogm,y<d—1 as in (2.4). Define high-pass filters

d—1
1
2.12 am(z) = — amiy (2927, m=1,...,d—1.
(2.12) m(2) \/E;) miy (2°)
Output a symmetric filter bank {ag,a;,...,aq—1} with the perfect reconstruction

property, i.e., P in (2.4) is paraunitary and all filters a,,, m = 1,...,d — 1, have
symmetry:

(2.13) am(z) = diag(eT' 29T, ... em29 Ya,, (1/2) diag(e127, . .., e,27°"),

where ¢}’ == (k)" —k¢) + ¢, € Rand all " € {—1,1}, kj* € Z, for £ =1,...,r and

m=1,...,d—1, are determined by the symmetry pattern of P, as follows:
(2.14) [e12™,. .. ep2b, aizk%, ceey aizki, ceey af_lqu_l, . ,gfflzki_l]TSG := SP..
Proof. Rewrite Pe = (bmiy)ogm,y<d—1 as a d x d block matrix with r x r

blocks by,.. Since P. has compatible symmetry as in (2.14), we have [Sby.y]e,: =
ePlee2M ~Fe[Sbo.,]e. for £ =1,...,7 and m = 1,...,d — 1. By (2.11), we have

(215) [Sbm;'}/]e’j = Sgn(QZj - ry)szngjzRZ’j+Hjﬂ+kznikea éaj = 1) ceey T
By (2.15) and the definition of U* in (2.10), we deduce that

m T kT —k —
(2.16) [y (2))e = ez 0 e fayqn (27 Y)]ey.

This implies that [Sa,]; = e'e; 24 —keteo =i which is equivalent to (2.13) with
=k —ki+cform=1,...,d=1landl=1,...,r. O

Since the high-pass filters ay, ..., aq—1 satisfy (2.13), it is easy to verify that each
Y™ = [, ... ™7 defined in (2.6) also has the following symmetry:

217) (el =) =" Wet(es” =) = sy, (e =) = gt

In the following, let us present several examples to demonstrate our results and
illustrate our algorithms.

Example 1. Let d = 2 and » = 2. A 2-band orthogonal low-pass filter ag with
multiplicity 2 in [5] is given by

a0(2) = 1 12(1+271) 162271
M7 00 | —v2(22 = 92— 94271 —2(32—10+3271)
The low-pass filter ag satisfies (2.5) with ¢; = —1,¢c2 = 0, and €1 = 5 = 1. Using
Lemma 1, we obtain P,, := [ap.0,a0,1] and U as follows:
1 0 1 0
1| 6v2 0 | B2 7 1|10 +v2 0o o
Pay = 20 1 1 , U= % z 0 —z O
9— 10v/2 1 9—=  —=3v2(1+ =
@ 10v2 s V214D 0 0 0 V3
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Then P := P, U satisfies SP = [1, z]T[1,271, —1,1] and is given by
V2 6v2 0 0 8v2

T90 | 4142 10 51-—2) —3(1+2)

Applying Algorithm 2, we obtain a desired paraunitary matrix P, as follows:

6v/2 0 0 8v/2
p _ V2| 4(l+z) 10 5(1-z)  -3(1+2)
<20 414+2) —-10 5(1—-2) —=3(1+2)

4W2(1—2) 0 5V2(z+1) 3v2(z—1)

We have SP. = [1,z,2,—2|T[1,27!,—1,1] and coeffsupp([P.].,;) C coeffsupp([P]. ;)
for all 1 < j < 4. Now, from the polyphase matrix P := P.U* =: (am;y)ogm,y<1, We
derive a high-pass filter a; as follows:

1 { —V2(22 =92 —-9+27Y —2(32+10+3271) }

ai(z) = 10 222 —92+9—271) 6\/§(z—z*1)

Then the high-pass filter a; satisfies (2.13) with ¢} = ¢} =0 and el =1, el = —1.
Example 2. Let d = 3 and » = 2. A 3-band orthogonal low-pass filter ag with
multiplicity 2 in [12] is given by

o) = g | DG, ek Sl
540 | a21(2z) +2°a21(27%)  aga(z) + z%axn(z7")
where
a11(z) = 90 + (55 — 5v/41)z — (8 4+ 2v/41)2% + (TV41 — 47)2",
a12(z) = 145 4+ 5v/41 + (1 — V41)2% 4 (34 — 4V/41)2°,
az1(z) = (111 + 9V41)2" + (69 — 9V/41)2",
as2(z) = 90z 4 (63 — 3v/41)2” + (3V41 — 63)2°.

The low-pass filter ag satisfies (2.5) with ¢; = 0, ¢ = 1, and ¢; = e3 = 1. From

Pao = [20:0, @0:1, 20;2], the matrix U constructed by Lemma 1 is given by
V2 00 0 0 0
0 1 0 O 0 1
U 1 0O 0 1 o0 1 0
T2 0 00 V2 0 0
0O 0 z 0 —z O
0 =z 0 O 0 -z
Let
Co = 11— \/H, t12 = 5(7 - \/H), C12 = 10(29 + \/H)7 t13 = —560,
t16 = 3co, tis = 3(3vV/41 —13),  tos = 6(7+3V41),  to = 6(21 — V/41),

tss = 400V/6/co, tss = 12V6(VAL — 1), ts6 = 6V/6(4+ VA1), co6 = 3V6(3 4+ 7V/41).
Then P := P, U satisfies SP = [1, 2]T[1,1,1, 2% —1, —1] and is given by

o \/E 180\/5 blg(z) blg(z) 0 t15(2 — 271) th(Z — 271)
1080 0 0 180(1+2) 180v2 tos(1—2)  tos(1—2) |’
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where blz(z) = tlg (Z+Z_1) “+c12 and blg(z) = tlg(z— 2+Z_1). Applying Algorithm 2,
we obtain a desired paraunitary matrix P, as follows:

180\/5 612(2’) 613(2) 0 t15(z — %) t16(z — %)
0 0 180(142)  180v2 tos(1 —2) tes(l —2)
R T -
€7 1080 0 0 90v2(1+2) —-360 2E(1-2) 28(1-2) |’
0 V6ti3(1 — 2) ts3(1 — z) 0 tss(1+2)  tse(l+ 2)
0 YEu(loz etz o0 bes (2) b (2)

where b65( ) \/6(5t15(2’ Z_l) + 3612)/10 and bﬁﬁ(z) = —\/gtlﬁ(z + Z_l)/2 + Ce6-
Note that SP. = [1, 2,1, 2, —2,—1]T[1,1,1,271, —1, —1] and the coefficient support of
P. satisfies coeffsupp([Pe]. ;) C coeffsupp([P]. ;) for all 1 < j < 6. From the polyphase
matrix P := P, U* = (amﬁ)ogqu, we derlve two high-pass filters aj, ag as follows:

(2) = V2 ajy(z) +aly(z7")  aly(z) + 27 agy(27h)
A0S0 | ady () + 2k, () a22<>+za2 = |
V6 | ahi(z) = 2Pali (7)) afa(z) — 2Pady(27Y)
279080 | agy ) - i) a22<z>—z lagy (=) |

where
aty(z) = (47 — TVA1)2" 4+ 2(4 + V41)2* + 5(V41 — 11)z + 180,
ata(2) = 2(2V41 — 17)2% 4+ (VAL — 1)2° — 5(29 + V/41),
a3 (2) = 3(37 + 3V41)z + 3(23 — 3v41)z "
as(z) = —180z 4 3(21 — V41) — 3(21 — \/H)zﬂ
ati(z) = (43 + 17VAL)z + (67 — TV41)2~
a3y(z) = 11V41 — 31 — (79 + V41)z 1,
a3y (z) = (47 — 7V/41)2* —|—2(4+\/_)z —3(29 + V41)z,
asa(2) = 2(2v41 — 17)2% 4+ (VAL — 1)2° + 3(3 + 7V41).

Then the high-pass filters aq, as satisfy (2.13) with ¢f =0, ¢} =1, e} = ¢} =1 and
A=1,3=0,el=¢e2=-1.

As demonstrated by the following example, our Algorithm 1 also applies to low-
pass filters with symmetry patterns other than those in (2.5).

Example 3. Let d = 3 and » = 2. A 3-band orthogonal low-pass filter ag with
multiplicity 2 in [9] is given by

1 all(z) alz(z)

ao(z) - ﬁ azl(z) azz(z) ’
where
a11(z) = (11 — 14V17)2% + (29 + 8V17)z 4 234 + (85 — 16V17)2~ " — (17 + 2V/17)z >
a12(z) = (5VI7 — 16)2° + (2 + V17)2” + 238 — 11V17 + (136 + 29v17)z "
az1(z) = (136 +29v17)2* + (238 — 11V17)z + (2 + V17)2~' + (5V/17 — 16)2 2,
a(z) = (=17 — 2V17)2° + (85 — 16V/17)2° + 234z + 29 + 817 + (11 — 14V/17)z "
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This low-pass filter ap does not satisfy (2.5). However, we can employ a very simple

orthogonal transform F := \/ié [ 1 ] to ag so that the symmetry in (2.5) holds.
That is, for ap(z) := Fag(2)E, it is easy to verify that 3y satisfies (2.5) with ¢; =
co =1/2 and €1 = 1,69 = —1. Construct Pz, := [30,0,20:1,d0;2] from 3. The matrix

U constructed by Lemma 1 from P3, is given by

10 z! 0 0 0

0 21 0 2710 0

1 1 0 -1 0 0 0
V=% 0 1 0 -1 0 o0
0 0 0 0 V2 o0

0 0 0 0 0 2

Then P := P3,U satisfies SP = [ 71, —2 7171, -1,—1,1,1,—1] and is given by

234(1+1) ti(1-2) ts(1-12) 0 H7V2(1+ 1) tie(1—1)

=c 1 1 1 1 1 1
tor(1—2) tao(143) tea(143) taa(l—2) tos(1—2) tog(1+ 2)

where ¢ = % and t;;’s are constants defined as follows:

ti2 = 3(11 = V17),  ti3 = 3(V17 — 89), tie = 15v/2(2 + V17),
to1 = 13(V17 — 17),  taa = 6(2 +V17), tas = 6(37 — V17),
toa = —13(1 + V17), tas = —13V2(8 + V17), t26 = —3V2(7T + 10V/17).

Applying Algorithm 2 to P, we obtain a desired paraunitary matrix P, as follows:

[ 234(1+2) tip(1-1) ti3(1-2) 0 H7V2(1+ 1) tie(1— 1) 7
tor(1—2) toa(1+2) tos(1+1) taa(1-12) tos(1— 1) tas(1+ 1)
P _. tan(1— 1) taa(l421) tas(1+2) taa(l—1) t3s(1— 1) tas(1+ 1)
¢ t41(1+%) t42(1—%) t43(1—%) t44(1+%) -2t (1 l) t46(1_%)
%t44 0 0 —2\/§t41 —%t44 0
L 0 te2 te3 0 0 tes J
where all ¢;;’s are constants given by
t31 = —V/26(61 + 25V17) /4,  tz2 = —3v/26(397 + 23V/17) /52,
t3s = 3V26(553 4 23V/17) /52, tsa = 25V/26(1 + V/17) /4,
tss = V13(25V17 — 43) /2, t3s = 15v/13(23V17 — 19) /26,
tar = 9v26(1 — 3v/17) /4, tas = —3v/26(383 + 29V/17) /52,
taz = 3V26(29V17 +227) /52, taa = 27V26(1 + V17) /4,
tas = 3V/13(145V17 — 61)/26, tea = 9V78(41V17 — 9)/26,
tes = OVTB(11VIT +9)/26,  tes = 27V3(V/17 + 15)/V/13.
Note that P, satisfies SP, = [z}, —271, —271 271 1, —1]7[1, -1, -1,1,1, —1] and we

have coeffsupp([P.]. ;) C coeffsupp([ 1:5) for all 1 j < 6. From the polyphase
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matrix P := P, U*, we derive two high-pass filters a1, as as follows:

() = V26 | a11(2) —zaiy(271)  aia(2) + zajy(z7Y)
BTT36504 | ay () + zad (271) ady(z) —zaby(x ) |
3a(2) = @ aiy(z) aiy(2)
TUA056 | a3i(2) ady(e) |
where
at1(z) = (433 — 128V/17)2° + 13(25V/17 — 43) 2 — (1226 + 197V17)z,
ats(z) = (128V/17 — 433)2° + 15(23V17 — 19)2° — (758 4 197V/17)z,
a1 (2) = 3(133 — 44V17)2° + 117(3V17 — 1)2° — 3(73V17 + 94)z,
a3a(2) = 3(44v/17 — 133)2° + 3(145V/17 — 61)2° — 3(250 + 73v/17)z,
ati(2) = 131+ VIT) (2% — 227 + 2);ad(2) = 13BVIT - 1)(2° - 2),
a31(2) = (9+ 11IV17)(2° — 2),
a35(2) = (A1V17 — 9)(2° + 242° /137 + 18V172% /137 + 2).

Then the high-pass filters a; and 3z satisfy (2.13) with ¢} =c} =1/2,el = -1, el =1
and ¢? = c3 =3/2, el =1, e} = —1, respectively.

Let aj,as be two high-pass filters constructed from aj,as by ai(z) := Eai(2)FE
and as(z) := Fas(z)E. Then due to the orthogonality of E, {ap,a, a2} still forms
a d-band filter bank with the perfect reconstruction property, but their symmetry
patterns are different from those of 3g,a;, and as.

3. An algorithm for matrix extension with symmetry. In this section,
we present a step-by-step algorithm on matrix extension with symmetry to derive a
desired matrix P, in Theorem 2 from a given matrix P. Our algorithm has three steps:
initialization, support reduction, and finalization. The step of initialization reduces
the symmetry pattern of P to a standard form. The step of support reduction is the
main body of the algorithm, producing a sequence of elementary matrices Ay, ..., Ay
that reduce the length of the coefficient support of P to 0. The step of finalization
generates the desired matrix P. as in Theorem 2. More precisely, our algorithm
written in the form of pseudocode for Theorem 2 is as follows.

ALGORITHM 2. Input P as in Theorem 2 with SP = (§61)*S0s for some 1 x r
and 1 x s row vectors 01 and 65 of Laurent polynomials with symmetry.

L. Initialization. Let Q := Ug, PUsg,. Then the symmetry pattern of Q is

= T -1 -1
- Ty ) 39 [ ) 39 )
(3.1) SQ=1[1,,-1py,210, —21,,] [1s,, =15y, 27 gy, —27 14,]

where all nonnegative integers r1,...,74, S1, ..., S4 are uniquely determined by SP.
2. Support reduction. Let Po := Ug,, and J :=1.
while (|coeffsupp(Q)| > 0) do %% outer while loop
Let Qo := Q, [k1, k2] := coeffsupp(Q), and Ay := I;.
if ko = —kq, then
for j from 1 to r do

Let q := [Qol;,: and p := [Q];,: be the jth rows of Qo and Q, respectively.
Let [¢1, £5] := coeffsupp(q), ¢ := ¢5 — {1, and B; := I,.
if coeffsupp(q) = coeffsupp(p) and ¢ > 2 and (¢; = k1 or {2 = ks), then
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Bj = Bq. AJ = AJBj. Q() = Q()Bj.
end if
end for
Qo takes the form in (3.7).
Let B(—k2,k2) =1, Q1 :=Qq, j1:=1, and jo :=r3+ry + 1.
while j; < r1 + 72 and jo < 7 do %% inner while loop
Let q1 = [Ql]j1,: and Qg = [Ql]jg,:-
if coeff(qq,k1) =0, then j; :=j; + 1. end if
if coeff(qa, k2) = 0, then js := jo + 1. end if
if coeff(q1, k1) # 0 and coeff(qz, k2) # 0, then
B(—ka,k2) 1= B(—ka ) Blaran): Qi := QiBayan)- A= AsBiay a2
jl 2]1—|—1 jQ 2]2—|—1
end if
end while %% end inner while loop
end if
Q1 takes the form in (3.7) with either coeff(Q1, —k) = 0 or coeff(Q1, k) = 0.
Let AJ = AJBQ1 and Q = QAJ
Then SQ = [1,,, =1y, 21y, =215, )T g, =14y, 2711y, —27 11 .
Replace s1,...,s4 by s},..., s}, respectively. Let Py := A% and J := J + 1.
end while %% end outer while loop
3. Finalization. Q = diag(F}, F», F3, Fy) for some r; x s; constant matrices Fj
inF, j=1,...,4. Let U := diag(Up,,Up,,Ur,,Ur,) so that QU = [I,,0]. Define
PJ := U™ and PJ+1 = diag(Usgl,Is_T).
Output a desired matrix P, satisfying all the properties in Theorem 2.
In the following subsections, we present detailed constructions of the matrices
Use, Bq, B(qy,q2)s Ba,» and Ur appearing in Algorithm 2.

3.1. Initialization. Let 6 be a 1xn row vector of Laurent polynomials with sym-
metry such that SO = [e12,...,e,2°"] for some e1,...,e, € {=1,1} and ¢y,...,c, €
7. Then, the symmetry of any entry in the vector fdiag(z~1°1/21, ... z=[en/21) be-
longs to {£1,42z7'}. Thus, there is a permutation matrix Ey to regroup these four
types of symmetries together so that

(32) S(0U59) = [1111,_1n2,z_11n3,_2_11n4],
where Ugg := diag(z—[¢1/21 ... 2=Ten/21) By 1,, denotes the 1xm row vector [1,.. ., 1],
and ny,...,ny are nonnegative integers uniquely determined by S6. Since P satisfies

(1.4), it is easy to see that Q := Ug, PUsp, has the symmetry pattern as in (3.1).
Note that Usp, and Usp, do not increase the length of the coefficient support of P.

3.2. Support reduction. Denote Q := Uj, PUsp, as in Algorithm 2. The
outer while loop in the step of support reduction produces a sequence of elementary
paraunitary matrices Aq,...,A; that reduce the length of the coefficient support of
Q gradually to 0. The construction of each A; has three parts: {B1,...,B;}, B(_i ),
and Bq,. The first part {B1,...,B;} (see the for loop) is constructed recursively for
each of the r rows of Q so that Qp := QBj --- B, has a special form as in (3.7). If
both coeff(Qo, —k) # 0 and coeff(Qq, k) # 0, then the second part B(_j i) (see the
inner while loop) is further constructed so that Qi := QoB(_j,x) takes the form in
(3.7) with at least one of coeff(Q1, —k) and coeff(Qq, k) being 0. Bq, is constructed
to handle the case that coeffsupp(Q;) = [—k, k — 1] or coeffsupp(Q;) = [k + 1, k] so
that coeffsupp(Q1Bq,) C [~k + 1,k — 1].
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Let q denote an arbitrary row of Q with |coeffsupp(q)| > 2. We first explain how
to construct By for a given row g such that By reduces the length of the coefficient
support of q by 2 and keeps its symmetry pattern. Note that in the for loop, B; is
simply By with q being the current jth row of QBg---B;_1, where By := L.

By (3.1), we have Sq = 21y, —1,,2 ' 1,5, —2711,,] for some ¢ € {-1,1}
and ¢ € {0,1}. For ¢ = —1, there is a permutation matrix E. such that S(qFE.) =
2¢[1s,, —1s,,27 1, —2711,,]. For e = 1, we let E. := I;. Then, qE. must take the
form in either (3.3) or (3.4) with £; # 0 as follows:

Ly—2
qu = [fh _f27g17 _gz]zll + [f37 _f47 g3, _g4]zf1+1 + Z Coeﬁ(quvé)Ze
(3.3) (=142
+[£3,£4,81,82]2 7" + [£1,£2,0,0]2"2,
£y—2
qB. = [0,0, £, —f£2]2"" + [g1, —go, f3, — 4]z T + Z coeff(qE-, £)z*
(3.4) =0, 42

lo—1

+ g3, g4, £3,£4]22 " + [g1, 82, 1, £2] 2%,

If qE. takes the form in (3.4), we further construct a permutation matrix Eg such
that [g1, g2, f1, 2] Eq = [£1, 2, 81, g2] and we define Uq . := E.Eq diag(L;—s,, 2 'I,),
where s, is the size of the row vector [g1, g2]. Then qUq . takes the form in (3.3). For
qE. of form (3.3), we simply let Uq . := E.. In this way, qo := qUq,. always takes the
form in (3.3) with £; # 0.

Note that UgU; . = I, and [|£1]] = ||£2]| if qoqy = 1, where ||f|| := VE£*. Now
we construct an s x s paraunitary matrix Bq, to reduce the coefficient support of qqg
as in (3.3) from [¢1, {3] to [€1 + 1,45 — 1] as follows:

[ f1(z+ 2+ 2) f2(2 - 3) gi(l+3) | e21-3) ]
cFy 0 0 0
—fi1(z=3) | f(e- 2 +1) | —al-2) | —e(l+3)
1 0 cFy 0
* -—
(85)  Bg, = ¢ L) (14 2) —fE (1 - 2) e g ’
cfq 1 ceq 2 glgl
0 0 cG1 0
jj—jflu—z) —%f2(1+z) 0 Cel, 85
L 0 0 0 G2

where cs, := [[£1]], cg, := llg1ll; ca» = llg2ll, co := coeff(qo, 1 + 1)coeft(qg, —fa) /et

200 i g #0, e )
cg/ = 81 cg, = g2
! c otherwise, 2 c otherwise,
£ .
¢ 1= (4cf, + 2c5, + 2cg, + |eo*)'/?, and [y, Ff] = Us,, [g]7,G5] = Uy, for j = 1,2

are unitary constant extension matrices in F for vectors £, g; in F, respectively (see
section 4 for a concrete construction of such unitary matrices Us, and Uy,). Here, the
role of a unitary constant matrix Uz in F is to reduce the number of nonzero entries
in f such that £Us = [||£],0,...,0]. The operations for the emptyset §) are defined by
0] =0,0+ A=A, and 0 - A =0 for any object A.

Define Bq := Uq,cBq,Ug .. Then Bq is paraunitary. Due to the particular form of
B, as in (3.5), direct computations yield the following very important properties of
the paraunitary matrix Bg:
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(P1) SBq = [1s,, —1s,, 215y, —214,]T[1s,, —1s,, 27 11,, —27 114, ], coeffsupp(By) =
[—1,1], and coeffsupp(qBq) = [¢1+1, 2 —1]. That is, Bq has compatible sym-
metry with coefficient support on [—1,1] and Bq reduces the length of the
coefficient support of q exactly by 2. Moreover, S(qBq) = Sq.

(P2) If (p,q*) has mutually compatible symmetry and pq* = 0, then S(pBg) =
S(p) and coeffsupp(pBq) C coeffsupp(p). That is, Bq keeps the symmetry
pattern of p and does not increase the length of the coefficient support of p.

Next, let us explain the construction of B(_j, ). For coeffsupp(Q) = [~Fk, k] with
k> 1, Q is of the following form:

F11 —F21 G31 —Gaq1 Fs1 —Fg1 G —Gs1
Q= —Fia Fao —Gs2 Gaa 2R —F52 Fo1 —Gr2 Gs2 Skl

0 0 F31 —Fy G —G21 Fry —F31
(3 6) 0 0 —F39 Fyo —G12 Gaa —Fra Fgo
’ oo Fs1 Fe1 Gs1 Gai Fi1 Fo 0 0
Fs2  Fe1 Gsz2  Gaz k—1 Fia  Faa 0 0 k
ﬁ‘ 0
+ nz%kcoc @Qn)+ Gs1 Ge1 P Fa1 |~ + G Ga1 Fmi Fu |7
N Gs2  Ge2 Fra  Fso G122 Ga2 F3z  Fao

with all Fj;’s and Gj;’s being constant matrices in I and Fyy, Fbo, F31, F42 being of
size r1 X S1, o X 82, '3 X 83, '4 X 84, respectively. Due to properties (P1) and (P2) of
Bg, the for loop in Algorithm 2 reduces Q in (3.6) to Qo := QB; - - - B, as follows:

() 53,1 7~é41 0 0O 0 o0
(37) |: 0 0 —Gs2 Gy2 ] SR |: ~0 ~0 0 O :| s

0 0 0 0 Gin G2 0 O

0O 0 0 0 G2 Gao 0 O

If either coeff(Qq, —k) = 0 or coeff(Qq, k) = 0, then the inner while loop does nothing
and B(_p ) = Is. If both coeff(Qq, —k) # 0 and coeff(Qo, k) # 0, then B(_ 1) is
constructed recursively from pairs (qi,q2) with q1, g2 being two rows of Qq satisfying
coeff(q1, —k) # 0 and coeff(qz, k) # 0. The construction of B, q,) With respect to
such a pair (qi,qz2) in the inner while loop is as follows.

Similar to the discussion before (3.3), there is a permutation matrix Fg, q,) such
that q; := q1F(q, q,) and g2 := q2F(q, q,) take the following form:

91,92

[al]:[o 03 f‘*}z-u{fs ~fo _Gr *§S}Z—k+1

G2 0 0 o e§1  —€Ga  efr —efs
(38) = w([2] ) Fo Jo G G ] ks [22 2 o)
+n:22;kcoe @ )T G5 96 fr fs : " @i g 0 o0]°
where € € {—1,1} and all g;’s are nonzero row vectors. Note that g = |[gz] =: ¢z,
and ||gs|| = ||g4| =: cg,. Construct an s x s paraunitary matrix Bg, g,) as in (3.9) with
co = coeff(q1, —k + 1)coeff(q3, —k)/cg,, ¢ == (Jco|* + 402-3)1/2, and [léﬁ’éﬁ = Ug,
being unitary constant extension matrices in F for vectors g; in F, j = 1,...,4,

respectively. Let B(q, q.) = E(q1,qz)B(a1,a2)E(:€|1,q2)~ Similar to properties (P1) and
(P2) of By, we have the following very important properties of B(q, g,):

(P3) SB(qy,42) = [Ls1, —1sy,21sy, —215,] (15, —14,,27 11, —27 11, ], the coeffi-
cient support of B(q, q,) is on [—1, 1], coeffsupp(q1Bq,.q.)) € [k + 1,k — 1],
and coeffsupp(q2B(q, q,)) € [~k + 1,k — 1]. That is, B(q, q,) has compatible
symmetry with coefficient support on [—1, 1] and B(q, 4,) reduces the length of
both the coefficient supports of q; and g2 by 2. Moreover, S(q1B(q, 4.)) = Sa1

and S(q2B(q,,q.)) = S92.
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(P4) if both (p,q7) and (p,q3) have mutually compatible symmetry and pqj =
pqs = 0, then S(pB(q,,q,)) = Sp and coeffsupp(pB(q, q,)) € coeffsupp(p).
That is, B(q,,q.) keeps the symmetry pattern of p and does not increase the
length of the coefficient support of p.

Pt S| 0 g(1+1) | &a(1—-12) 7
g1
cG1 0 0 0
0 =g —gs(1— 1) | —8a(1+7)
g1
. 0 G 0 0
39 B ~ o~ = - o~ o~ _
B B =0 Ggary | -Baa-»| 28 0
g1 g1 g3
0 0 G 0
B (1-2) | —Eg(l+2) 0 ~mZg,
g1 g1 g3
i 0 0 0 G4

Now, due to the properties (P3) and (P4) of B(g, q,), B(—&,k) constructed in the
inner while loop reduces Qg of the form in (3.7), with both coeff(Qp, —k) # 0 and
coeff(Qo, k) # 0, to Q1 := QoB(_ ) of the form in (3.7) with either coeff(Q1, —k) =
coeff(Q1, k) = 0 (for this case, simply let Bq, := I,) or one of coeff(Qq,—k) and
coeff(Qq, k) is nonzero. For the latter case, Bq, := diag(U1 W1, Is,4s,)E with matrices
U1, W1 constructed with respect to coeff(Qq,k) # 0 or Bq, := diag(s,+s,, UsW3)E
with Us, W3 constructed with respect to coeff(Q1, —k) # 0, where FE is a permutation
matrix. Bq, is constructed so that coeffsupp(Q1Bq,) C [~k + 1,k — 1]. Let Q; take
form in (3.7). The matrices Uy, W; or Us, W3, and E are constructed as follows.

Let Uy :=diag(Ug,,Ug,) and Us := diag(Ug, , Ug, ) with

~ éll ~ é21 ~ é31 ~ 641
Nl = ~ (; = ~ (; = e = = .
(3 O) Gl |: Gz :| 7 ? |: :| ’ ’ |: G :| ’ G4 |: Gaz :|

Here, for a nonzero matrix G with rank m, Ug is a unitary matrix such that GUg =
[R, 0] for some matrix R of rank m. For G = 0, Ug := I and for G = 0, Ug = 0.
When G1GY = G2G3, Ug, and Ug, can be constructed such that G1Ug, = [R, 0] and
G2Ug, = [R, 0] (see section 4 for more detail).

Let m1, ms be the ranks of G, Gs, respectively (m; = 0 when coeff(Q1,k) =0
and ms = 0 when coeff(Q;, —k) = 0). Note that G1G} = G2G5 or G3G3 = GuG3
due to Q1Q} = 1. The matrices W1, W3 are then constructed by
(3.11)

U1 U2 U3 U4
— 1517m1 —— 15377”3
Wl T U2 U1 ’ W3 ’ U4 U3 ’

IS2_m1 IS4_m3

where Uy (z) = —Ugz(—2) := 1+§71[m1 and Us(z) = Uy(—2) := 3321,

Let Wq, := diag(U1W, I,,1s,) for the case that coeff(Qi, k) # 0 or Wq, =
diag(Is, +s,, UsWs3) for the case that coeff(Q1, —k) # 0. Then Wq, is paraunitary. By
the symmetry pattern and orthogonality of Q1, Wq, reduces the coefficient support of

Q1 to [-k+1,k—1], i.e., coeffsupp(QiWq,) = [-k+1,k—1]. Moreover, Wq, changes
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the symmetry pattern of Q; such that S(Q1Waq,) = [1/, —1,, 21,5, —21,,]T S0, with
SO1 = [z Ly, Loy mmys =2 Ly =Ly gy 27 gy gy —Ling, =27 Loy iy -
F is then the permutation matrix such that
S(QiWq,)E = [1,,,—1,,,21,,, —21,,,]7 S0,

with §0 = [1s, —my+mas —Lss—matma 2~ Logmmatmrs =2~ Lsy—matma] = (S61)E.

4. Proofs of Theorems 1 and 2. In this section, we shall prove Theorems
1 and 2. The key ingredient is to prove that the coefficient supports of Aq,..., Ay
constructed in Algorithm 2 are all contained inside [—1, 1].

Let us first present a detailed construction for the unitary matrices Us and Ug
that are used in Algorithm 2. For a 1 x n row vector £ in F such that ||£]| # 0, we
define n¢ to be the number of nonzero entries in £ and e; := [0,...,0,1,0,...,0] to
be the jth unit coordinate row vector in R™. Let E: be a permutation matrix such
that £F: = [f1,..., fn;,0,...,0] with f; # 0 for j =1,...,ns. We define

=
=

if?’l,f = 1,

=
=

(4.1) Vi = ! .
A (In — —”Ufl‘zvg‘vf) if ng > 1,

=
=

where vs == £ — %Hf”el. Observing that ||ve]|? = 2||£]|(||£]] — | f1]), we can verify
that VeV = I, and £E¢ Vs = ||f|le1. Let Us := E¢V;. Then Us is unitary and satisfies
Us = [ﬁ,F*] for some (n — 1) x n matrix F in F such that £Uz = [||f],0,...,0].
We also define Us := I, if f = 0 and Uz := () if £ = (). Here, U plays the role of
reducing the number of nonzero entries in £. More generally, for an r X n nonzero
matrix G of rank m in F, employing the above procedure to each row of G, we can
obtain an n x n unitary matrix Ug such that GUg = [R, 0] for some r x m lower
triangular matrix R of rank m. If G1G} = G2 G35, then the above procedure produces
two matrices Ug,, Ug, such that G1Ug, = [R, 0] and G2Ug, = [R, 0] for some lower
triangular matrix R of full rank. It is important to notice that the constructions of Us
and Ug involve only the nonzero entries of £ and nonzero columns of G, respectively.
In other words, up to rearrangements, we have

(Ut = ([Us): )" =e; if [£]; =0,

(42) Udly: = (Uals)” =e; if [G.; = 0.

Next, we establish the following lemma, which is needed later to show that the
coefficient support of (By ---B;)B(_j,x is contained inside [—1, 1].
LEMMA 2. Let B be an s X s paraunitary matriz such that coeffsupp(B) C [—1, 1]
and SB = (80)*S0 with SO = [14,,—1s,,2 14, —2711,] for some nonnegative
integers si,...,S4 such that s1 + -+ + s4 = s. Then the following statements hold.
(i) Let p be a 1 x s row vector of Laurent polynomials with symmetry such that
pp* = 1, coeffsupp(p) = [k1, ko] with ke — k; > 2, and Sp = €2°S6 for some
e € {—1,1} and ¢ € {0,1}. Let q := pB. If coeffsupp(q) = coeffsupp(p),
then coeffsupp(BBq) C [—1,1], where Bq is constructed with respect to q as
in section 3.

(ii) Let p1,p2 be two 1 X s row wvectors of Laurent polynomials with symmetry
such that pj,pj, = 6(j1 — j2) for ji,j2 = 1,2, Sp1 = €180 and Spz = €2250
for some e1,e2 € {—1,1}, and coeffsupp(p1) = coeffsupp(p2) C [k, k] with
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k> 1. Let q1 := p1B and qz := p2B. If coeffsupp(qi) = [—k,k — 1] and
coeffsupp(qz) = [-k+1, k|, then coeffsupp(BB(q, q,)) € [—1, 1], where B(q, q.)
is constructed with respect to the pair (q1,9z2) as in section 3.

Proof. Due to Sp = €250, as we discussed in section 3, there is a U, . such that
pUp,c takes the form in (3.3). Since U, . is a product of a permutation matrix and
a diagonal matrix of monomials, we shall consider the case that U, . = I,, while the
proofs for other cases of Uy . can be obtained accordingly. Then p takes the standard
form in (3.3) with £1 # 0. In this case, s > 0 and s > 0 due to ||f1]| = ||£2]] # 0.
By our assumptions, q := pB must take the following form:

ko—2
q:= pB = [,fl, —Ez,gl, —gz]zkl + [,fg, —’f4,§3, —§4]zk1+1 + Z coeff(pB, n)z"
n=ki+2

+ [£5, %4, 81,8202 " + [£1,2,0,0]2"2,

with Ffl ;é 0. Then Bq is given by (35) with fl, fz, g1, g2, Fl, FQ, Gl, GQ
being replaced by £1, fo, g1, &2, ﬁl, ﬁg, (~¥1, C~¥2, respectively, and all constants
7,1 Cg1s Ca» €05 G, Cg) , Cgy, DeIng defined accordingly.

Also, due to the symmetry pattern and coeffsupp(B) C [—1, 1], B is of the form

[ Ai(z+ 1)+ Dy As(z = 1) Bs(1+ 1) Bs(1-1)
AQ(Z—%) A4(Z+§)+D2 03(1—%) C4(1+%)
(43) B= ,
Bl(1+z) Cl(l—z) A5(Z+ %)+D3 A7(Z— %)
Ba(1 - 2) Ca(1+2) Ag(z— 1) As(z+ 1)+ Dy |

where A;’s, B;’s, C;’s, and D;’s are all constant matrices in F and D; is of size s; X s;
forj=1,...,4. Let Z :={1,s1+1,(1—8(s3))(s1+s2+1),(1—05(s4))(s1+52+s3+1)}
be an index set. It is easy to verify that coeffsupp([BBq].;) C [—1,1] for all j ¢
Z. Hence, by coeffsupp(BBq) C [—2,2], we need only compute coeff([BBg]. ;,2) and
coeff([BBg].,j, —2) for those j € Z. Let us show that coeff([BBq]. ;,2) = 0 for j = 1,
i.e., the coefficient vector of 22 for the first column of BB, is 0. By coeff(pB, k1) =
coeff(p, k1 + 1)coeft(B, —1) + coeff(p, k1 )coeff(B, 0), we have

f1 =1£3A; +f4A2 +£1D1 + g1 B1 — g2 Bo,
fo =f£3A3 4+ £4A4 + f2Do — g1C1 + g2C0,
g1 = £3Bs + £4C3 + g3As + gaAs + £1Bs — £2C5 + g1 D3,
go =f3By + £4Cs + g3A7 + gaAgs — £1Bs + £2Cs + g2 Dy

Similarly, by coeff(BBq,2) = coeff(B, 1)coeff(Bg, 1), we have

(4.4)

Ay As o o0 EN Afy — Azfs
1 Ao Ay 0 0 —fx 1 Aoxfr — Ayt
fF([BBq]:.1,2) = — e . 11 12 _
coe ({ q].,l, ) c B1 —C1 As Aq gI - B1fi+C1f§+AsgI —A7g;
—Bs Ca Ag As & —Bof] — C1f5 + Acg; — Asg;

Due to BB* = I, we obtain

A1 AT — A3A5 =0, A1 A5 — A3A; =0,
A1DT + D1AT + BsB; — B4B; =0,
D1 A5 — A3D5 + B3C3 — B4Cj =0,
A1B7 + AsCT + BsA; — B4A7 =0,
—AlB; — A3C§ + B3A(*) — B4A§ =0.
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Applying the identities above to A;f} — A3f} and using (4.4), we get

Arf — Asts = A1(f3A1 + £4A2 + £1D1 + g1 B1 — g2Bo)”

— As(£3As + £4A4 + £2D2 — g1C1 + g2Co)"

= (A1A] — A3A3)f5 + (A1A5 — AsAY)EL + (A1 DY)E]
+(—AsDE)ES + (AuB] + AsCDgl — (AuB + AsCh)e

— _(D1A% + B3Bi — BaBl)£r — (D1A} + BsCi — BaC})£}
— (B3As — BaA7)g1 — (B3Ag — BaAg)gs

= —Dl(flAl + szg)* — B3(f133 + £2C3 + g1A5 + ngg)*
+ Ba(f1Ba + £2C4 + g1 A7 + g2A4s)" = 0,

where the last above identity follows by coeff(pB, ke + 1) = coeff(pB, k1 — 1) = 0.
Similarly, we can show that Asf} — A4f5 = 0, Bif} + C1£5 + Asg; — A7g5 = 0, and
—Bof} — C1£5 + Asgt — Asgs = 0. Hence, coeff([BBq]..1,2) = 0. By similar computa-
tions as above and using the paraunitary property of B, we have coeff([BB]. ;, £2) = 0
for all j € Z. Therefore, we conclude that coeffsupp(BBq) C [—1,1]. Item (i) holds.
For item (ii), up to a permutation matrix E(q, q,) as in section 3, B(q, q,) takes
the form in (3.9). Since B takes the form in (4.3), to show that the coefficient support
of BB(_j, ) is contained inside [—1, 1], we need to show that all the coefficient vectors
Ai1gi—Asgs, Asgl —Augs, Asgi—Arg), and Asgs— Asg) are zero vectors. Again, using
the paraunitary property of B and expressing g1, g2, g3, €4 in terms of the original vec-
tors from py, p2 similar to (4.4), we conclude that coeffsupp(BB(q, q,)) € [—1,1]. d
With the result of Lemma 2, the next lemma shows that the coefficient support
of B := (B1---B,)B(_k, is contained inside [~1,1]. Moreover, it shows that the
coefficient support of A := BBq, is also contained inside [—1, 1].
LEMMA 3. Suppose Q is an r x s matriz of Laurent polynomials such that QQ* =
I, 8Q satisfies (3.1), and coeffsupp(Q) = [k1, k2] with ke — k1 = 1. Then there exists
an s X s paraunitary matriz A of Laurent polynomials with symmetry such that
(i) coeffsupp(A) C [—1,1] and |coeffsupp(QA)| < |coeffsupp(Q)| — |coeffsupp(A)|;
(ii) of the jth column p := [Q].; of Q satisfies coeff(p, k1) = coeff(p, k2) = 0, then,
up to a permutation matriz, [Al;. = ([Al. ;)T = e;. That is, any entry in the
jth row or jth column of A is zero except that the (j,j)-entry [A];; = 1;
(i) SA =[1s,,—14,,21,,, —z154]T[1S/1, —1g, z‘llsé, —z_llsz] for some nonneg-
ative integers s, ..., sy such that s§ + s5 + 85+ s = s.
Proof. Let A = (By---B;)B(_j 1)Baq, be constructed as in Algorithm 2, where
Q1 := Q(By---By)B(—k,k)> B(—k,r) is constructed in the inner while loop of Algorithm
2, and By,...,B; is constructed in the for loop of Algorithm 2. If ke # —kq, then
Bi1 =:--=B; = B(_i,k = s and Ais simply Bq, , where Q; = Q is of the form in (3.7)
with either coeff(Q1, —k) = 0 or coeff(Q1, k) = 0. In this case, by the construction
of Bq, as in section 3, all items in Lemma 3 hold. We are already done. So, without
loss of generality, we assume that ko = —k1 = k.
We first show that the coefficient support of By - - - B, is contained inside [—1,1].
Let p; := [Ql,:, Bo :== I, and q; := p;jBg---B;_1 for j = 1,...,7. Suppose we already
show that coeffsupp(Bg - --Bj—1) € [-1,1] for j > 1. Then, according to Algorithm 2,
Bj = By, if coeffsupp(p;) = coeffsupp(q;), |coeffsupp(q;)| > 2, and one of coeff(q;, k)
and coeff(q;, —k) is nonzero; otherwise B; = I,. Note that By ---B,;_1 is paraunitary
and satisfies S(By---B;_1) = (86)*S0 with S = [14,,—1,,27'1,,,—2711,,]. By
item (i) of Lemma 2, the coefficient support of By---B;_1B; is also contained in-
side [—1,1]. By induction, the coefficient support of By ---B, is contained inside
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[~1,1]. Moreover, By ---B, takes the form in (4.3). Next, since B(_jy) is con-
structed recursively from pairs (q1,q92) of Qo := Q(B;1 -+ - B,.), by applying induction
again and using item (ii) of Lemma 2, we conclude that the coefficient support of
B:= (B1---B;)B(_k,y) is contained inside [—1,1].

Due to the properties (P1), (P2) of Bq and (P3), (P4) of B(q, q,), B1,...,B; and
B(—k,k) reduce Q of the form in (3.6) to Q1 = Q(B1---B;)B(_x,x) = QB of the form
in (3.7) with at least one of coeff(Qq, —k) and coeff(Q, k) being 0. As constructed
in section 3, Bq, = I for the case that coeff(Qi, —k) = coeff(Q1,k) = 0, or Bq, =
diag(U1 W1, Is,+5, ) E for the case coeff(Q1, k) # 0, or Bq, := diag(Is, +s,, UsW3)E for
the case that coeff(Q1, —k) # 0. We next show that coeffsupp(BBq,) C [-1,1].

Let Q take the form in (3.6) and Q; take the form in (3.7) with coeff(Qq, k) # 0.
Then Bq, := diag(U1W1, I, +s,)F with Uy, W1, and F being constructed as in section
3. Note that B takes the form in (4.3). Define

Giun G21 F31 Fu Gs1 Ger Fu Fw

(G, G, Fs, i, G, Go, Fr, Fy] = Gi12 G222 F32 Fpo Gs2 Ge2 Fro Fyo

By coeff(Q1, k) = coeff(Q, k — 1)coeff(B, 1) + coeff(Q, k)coeff(B, 0), we have

G1 = G5A1 + GeAs + FrB1 — FsBy + G1D1 + F3By + F4Bs,
G2 = G5A3 + GeAs — FrCy + FsCo + GoD3 + F3C1 + FyCo,
0 = F7As + FsAs + G1B3 + G2C3 + F3D3 =: ﬁ37
0=FrA7 + FsAs + G1Bs + G2C4y + F4 Dy =: ﬁ47

(4.5)

where él, G4 are matrices defined in (3.10). Then U; = diag(Uél, Ué2) and W, is
defined as in (3.11). By the coefficient supports of B and Bq,, we need only check
that coeff(B diag(U1 W1, Is,+s,), —2) = 0. Let Vi1, Via, Va1, Vas be diagonal matrices
of size s1 X s1, 81 X S2, S2 X S1, S2 X Sa, respectively, and satisfy diag(Vje) = [1m,, 0]
for 7, = 1,2, where m; is the rank of C~¥1. Then

coeff(B diag(U1 W1, Is; 45, ), —2) = coeff(B, —1) - coeff(diag(U1 W1, Is,+s,), —1)

Ay —As Bz —By Ug,Vii Uz Vi 0 O
_ —A2 A4 —03 C4 U§2V21 U§2 V22 0 0
0 0 As  —Ar 0 0 0 0
0 0 -—As As 0 0 00

Thus, we need to show AlUélVlj — A3Ué2‘/2j =0 and A2U§1V1j — A4U@2V2j =0,

for j = 1,2, which is equivalent to showing that leUé Al — ngUg A3 =0 and
— 1 2

leUélAg — ‘/j2Ué2AZ =0 for j = 1,2. Since G1Ug, = [R,0] and G2Ug, = [R,0],

for some lower triangular matrix I of full rank my, it is equivalent to proving that

GlAT — G2A§ =0 and GlAS — GQAZ =0. By (45), we have

G1A} — GoAS = G1AT — G2 A3 + F3B; — F4B;
= (GsA1+ GsAaz + Fr By — FsBy + G1D1 + F3B1 + F4B2) A]
— (G5As + G Ay — F7Cy + F3Co + GoDy + F3C1 + FuCa) Az
+ (FrAs + FsAs + G1Bs + G2Cs + F3D3) B3
— (F7 A7 + FsAs + G1By + G2Cy + F4D4) By
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— Gs(A1A} — AsAL) + Go(AzAT — ALAY)
+ F7(B1A] + C1 A3 + AsB; — A7B}) — Fs(B2AT1C2 A5 — AgB3 + AsBj)
+ G1(D1AT + B3B3 — B4B}) + Go(—D2 A5 + C3B3; — C4By)
4 Fy(BLAT — CLAS + D3B) + Fa(B2 AT — Co A} — DuB}) = 0,

where the last identity follows from BB* = I; and coeff(QB,k + 1) = 0. Similarly,
G1 A5 — GoA; = 0. The computation for showing coeffsupp(BBq,) C [—1,1] with
Bq, = diag(ls,+s,, UsW3)E is similar. Consequently, coeffsupp(BBq,) C [-1,1].
Therefore, item (i) holds. Item (ii) is due to the property (4.2) of Us and Ug.

Note that SB = (86)*S0 with S = [1,, —1s,,2 14, —2711,,]. By the con-
struction of Bq,, SBq, = (89)*[13/1,—lsg,z’llsé,—zfllsg] for some nonnegative
integers s/, ..., s} depending on the rank of 61 or 63 (see section 3). Consequently,
item (iii) holds. This also completes the proof of Algorithm 2. d

Proof of Theorems 1 and 2. The sufficiency part of Theorem 2 is obvious. We need
only show the necessary part. Suppose SP = (§61)*S0,. Let Q := Usp, PUsy, and
coeffsupp(Q) := [k1, k2]. Then SQ satisfies (3.1). By Lemma 3, the step of support
reduction in Algorithm 2 produces a sequence of paraunitary matrices Aj,..., Ay
with coefficient support contained inside [—1,1] such that QA;---A; = [I,0]. Due
to item (i) of Lemma 3, J < [£25%]. Let P; := AY, Py := U%, , and P,y :=
diag(Usg,, Is—r). Then P, := Py 1Py ---P1Py satisfies [I,-,0]P. = P. By item (iii) of
Lemma 3, (P41, P;) has mutually compatible symmetry for all 0 < j < J. The claim
that |coeffsupp([Pe]k,;)| < maxicn<, |coeffsupp([P]n, ;)| for 1 < j,k < s follows from
item (ii) of Lemma 3. Hence, all claims in Theorems 1 and 2 have been verified. a
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