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A dual-chain approach is introduced in this paper to construct dual wavelet filter systems
with an arbitrary integer dilation d � 2. Starting from a pair (a, ã) of d-dual low-
pass filters, with (a0,a1) = (a, ã), a top–down chain of filters a0 → a1 → ·· · → ar = δ

is constructed with consecutive d-dual pairs (a j,a j+1), j = 1, . . . , r − 1, and #(a1) >

#(a2) > · · · > #(ar) = 1, where δ(0) = 1 and δ(k) = 0 for all k ∈ Z\{0}, and #(a j)

denotes the number of filter taps of a j . This enables the formulation of the filter system

(ar;br,1, . . . ,br,d−1) =: (ar; �br), with �br = [δ(· − 1), . . . , δ(· − d + 1)], to be used as the
second component of the initial filter system ((ar−1; �br−1), (ar; �br)) of the bottom–up d-
dual chain: ((ar−1; �br−1), (ar; �br)) → ((ar−2; �br−2), (ar−1; �b�

r−1)) → ·· · → ((a0; �b0), (a1; �b�
1)),

constructed bottom–up iteratively, from j = r to j = 0, by using both the d-duality property
of (a j,a j+1), j = 0, . . . , r − 1 and the unimodular property of the polyphase Laurent

polynomial matrix associated with the filter system (a j; �b j). Then the desired dual wavelet
filter systems, associated with a and ã, are given by (b1, . . . ,bd−1) := (b0,1, . . . ,b0,d−1) and

(b̃1, . . . , b̃d−1) := (b�
1,1, . . . ,b�

1,d−1). More importantly, the constructive algorithm for this
dual-chain approach can be appropriately modified to preserve the symmetry property of
the initial d-dual pair (a, ã). For any dilation factor d, the dual-chain algorithms developed
in this paper provide two systematic methods for the construction of both biorthogonal
wavelets and bottom–up wavelets with or without the symmetry property.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The traditional application of wavelets to analyze signals and data is to decompose the given signal or data-set into multi-
levels of frequency bands in order to facilitate effective analysis and processing. The given signal or data-set is represented in
terms of some desirable scaling function, such as the mth order cardinal B-spline, and its companion “synthesis” wavelet. The
(finite) sequence that governs the refinement relation of the dual scaling function, together with the (finite) sequence that
defines the dual wavelet (in terms of the dual scaling function), is used as a filter pair for signal or data-set decomposition,
where duality is required to assure perfect reconstruction. We may call the decomposition/reconstruction scheme for signal
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Fig. 1.1. Construction of dual pairs (a j+1,a j+2), (a j+2,a j+3) from previous pair (a j ,a j+1), j = 0, . . . , r − 3.

Fig. 1.2. (a0,a1) := (a, ã) and ar = t0δ(· − c0), t0 ∈ C and c0 ∈ Z.

processing and data analysis the “top–down” application of wavelets. Of course, when the dilation is extended from 2 to an
arbitrary integer d > 2, the number of wavelets and that of wavelet (band-pass) filters are both equal to d − 1.

In the literature of filter banks for multirate systems (see, for example, [31]), scaling and wavelet functions are not
considered, since only filter sequences are needed for digital signal processing and sub-band coding. In this regard, however,
it is perhaps interesting to point out that there is indeed a one-to-one correspondence between filter banks and frequency-
based wavelets in the distribution space, recently established by the second author in [19]. For other applications, such as
curve subdivision and multi-level data interpolation, the top–down process of decomposing a finer data-set to coarser sets is
reversed. As to wavelet curve subdivision, for instance, the wavelet subdivision scheme is applied to a coarse (ordered) set of
control points to add new points and embed desirable curve features by using the filter pair of refinement sequence of the
scaling function and the sequence that governs the synthesis wavelet, while the “decomposition” filter pair can be used for
curve editing. In other words, the top–down “decomposition/reconstruction” is changed to bottom–up “subdivision/editing”
(see [3,4]). For such bottom–up applications, since there is no data-set to be analyzed, the dual scaling function and dual
wavelet are somewhat useless. Only the decomposition filter pair is used for editing (see [4]).

The objective of the present paper is to introduce an innovative approach, along with two effective algorithms, for the
construction of the wavelet filter system and its dual, starting from a given dual pair of finite sequences a = {a(k)}k∈Z and
ã = {ã(k)}k∈Z , where duality will be defined in (1.4) relative to an arbitrary integer d � 2. A typical example of a finite
sequence a = {a(k)}k∈Z : Z → C is the refinement sequence of the mth order cardinal B-spline Nm for any m � 2, defined by

Nm(x) = d
∑
k∈Z

a(k)Nm(dx − k), x ∈ R, (1.1)

or equivalently, N̂m(dξ) = a(e−iξ )N̂m(ξ) in the frequency domain, where N̂m(ξ) := ∫
R Nm(x)e−ixξ dx, and

a(z) :=
∑
k∈Z

a(k)zk =
(

1 + z + · · · + zd−1

d

)m

, z ∈ C\{0}. (1.2)

The innovation of our approach is the introduction of a dual-chain a0 → a1 → ·· · → ar−1 → ar with (a0,a1) = (a, ã) such
that the number of filter taps of a j (more precisely, the length of the coefficient support interval of a j , see definition in
Section 2) is strictly decreasing as j runs from 1 to r and (a j−1,a j) is a dual pair for each j = 1, . . . , r. Our first algorithm
(see Theorem 1 and Algorithm 1 in Section 2) terminates at j = r, with ar having only one tap, that is, ar = t0δ(· − c0) for
some t0 ∈ C\{0} and c0 ∈ Z, where δ(0) = 1 and δ(k) = 0 for all k ∈ Z\{0}. This top–down dual-chain algorithm is illustrated
in Fig. 1.1, where the dual pairs (a j+1,a j+2) and (a j+2,a j+3) are constructed from (a j,a j+1) and (a j+1,a j+2) respectively
and iteratively, and the dual-chain so obtained is displayed in Fig. 1.2. This algorithm, however, does not necessarily capture
any symmetry property of a given dual pair (a0,a1) in generating the wavelet filter system and its dual. By forcing the filter
lengths of a1, . . . ,ar to decrease by at least two taps at each iterative step in going down the dual-chain in Fig. 1.2, our
second algorithm, to be stated as Algorithm 2 in Section 2, does assure preservation of symmetry or anti-symmetry of a0
and a1. This second algorithm, to be highlighted in Theorem 2, terminates at j = r, either with ar that has a single filter
tap as in the first algorithm, or else with the Laurent polynomial symbol ar(z) of ar given by the sum of only two of its
“polyphase components” (see (1.6) for the definition); more precisely:
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ar(z) = zβa
[β]
r

(
zd) + zγ a

[γ ]
r

(
zd)

,

for some integers β,γ where 0 � β < γ � d − 1.
To facilitate better understanding of the ideas and procedures presented in this paper, the refinement symbol a(z) in

(1.2) for the spline setting will be used as a typical example, where the dual (or more precisely, d-dual) ã of a is given, in
terms of its Laurent polynomial symbol ã(z)� := aI

2n(z)/a(z), where

aI
2n(z) = z(1−d)n

(
1 + z + · · · + zd−1

d

)2n

×
n−1∑
j=0

( ∑
j1+···+ jd−1= j

d−1∏
k=1

(
n + jk − 1

jk

)
sin−2 jk

(
kπ

d

))(
1

2
− z + z−1

4

) j

, (1.3)

for any desirable integer n � m/2. Here, the standard notation ã(z)� := ã(z̄−1), z ∈ C\{0}, is used and aI
2n(z) is the unique

Laurent polynomial symbol with minimal degree, whose coefficient sequence has the shortest support interval [1 − dn,

dn − 1], of the refinement sequence of the interpolating scaling function of order 2n and with dilation d (see [13,17,24,
29,32]). Moreover, a CBC (coset-by-coset) algorithm in [1,13,14] can be applied in general to construct the d-dual filter ã
with an arbitrarily pre-assigned sum-rule order for a given filter a. One of the main objectives of this paper is to develop
a general algorithm for deriving the corresponding band-pass filters from a pair of dual low-pass filters. Therefore, together
with the CBC algorithms in [1,13,14], the algorithms developed in the present paper provide a complete computational
scheme for the construction of univariate biorthogonal wavelets with arbitrary integer dilations, at least in the distribution
sense as discussed in [19].

Recall that for any integer d � 2, the d-duality of two finite sequences u = {u(k)}k∈Z and ũ = {ũ(k)}k∈Z , relative to the
dilation factor d, is defined by∑

k∈Z
u(k)ũ(d j + k) = d−1δ( j), j ∈ Z, (1.4)

and the symbol of u is defined by the Laurent polynomial

u(z) :=
∑
k∈Z

u(k)zk, z ∈ C\{0}. (1.5)

Also recall that the polyphase components of the Laurent polynomial u(z) in (1.5) are defined by

u[γ ](z) :=
∑
k∈Z

u(dk + γ )zk, γ ∈ Z. (1.6)

Consequently, u(z) has the polyphase representation

u(z) = u[0](zd) + zu[1](zd) + · · · + zd−1u[d−1](zd)
.

Throughout this paper, u[0](z), . . . ,u[d−1](z) will be called the polyphase components of u(z), and for convenience, they are
also called the polyphase components of the sequence u itself. In other words, u[γ ](z) is the symbol of the coset sequence
u[γ ] = {u(dk + γ )}k∈Z of u.

By adopting the notation in (1.5)–(1.6), the duality relation of a and ã, as defined by (1.4) for u = a and ũ = ã, is
equivalent to the identity:

d−1∑
γ =0

a[γ ](z)ã[γ ](z)� = d−1. (1.7)

Returning to the first algorithm to be described in Section 2, though already illustrated in Fig. 1.1, if the sequence ar = δ

(t0 = 1 and c0 = 0 in Fig. 1.2) is the Kronecker delta sequence, then ar is the refinement sequence of the delta “function”
(or Dirac delta distribution), to be denoted by δ(x), with the corresponding lazy wavelets

ηγ (x) := dδ(dx − γ ), γ = 1, . . . ,d − 1,

that satisfy

ηγ (x) = d
∑
k∈Z

br,γ (k)δ(dx − k),

where br,γ := {br,γ (k)}k∈Z is obviously given by
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Fig. 1.3. Bottom–up construction of dual filter systems. Left: top–down chain. Right: bottom–up chain.

br,γ (k) = δ(k − γ ), k ∈ Z; γ = 1, . . . ,d − 1.

These wavelet filters br,γ = {δ(k − γ )}k∈Z, γ = 1, . . . ,d − 1, constitute the band-pass components of our initial filter system

(ar;br,1, . . . ,br,d−1),

with low-pass component ar = δ, for constructing the filter systems

(a j;b j,1, . . . ,b j,d−1) (1.8)

iteratively, from j = r − 1 to j = r − 2, . . . , and finally to j = 0, in going up the bottom–up dual-chain as illustrated in
Fig. 1.3.

To describe this bottom–up procedure, let us consider the polyphase matrices

P j(z) :=

⎡⎢⎢⎢⎢⎣
a[0]

j (z) a[1]
j (z) · · · a[d−1]

j (z)

b[0]
j,1(z) b[1]

j,1(z) · · · b[d−1]
j,1 (z)

...
...

. . .
...

b[0]
j,d−1(z) b[1]

j,d−1(z) · · · b[d−1]
j,d−1(z)

⎤⎥⎥⎥⎥⎦ , j = 0, . . . , r, (1.9)

associated with the filter bank systems in (1.8). (The interested reader is referred to [31] for further details on the application
of polyphase decomposition to the construction of filter banks.)

For each j = 1, . . . , r, the duality relation of a j−1 and a j , in terms of the polyphase formulation (1.7), is given by

d−1∑
γ =0

a
[γ ]
j−1(z)a[γ ]

j (z)� = d−1.

Consequently, for each j = 1, . . . , r,[
a[0]

j−1(z), . . . ,a[d−1]
j−1 (z)

](
P j(z)

)� = [
d−1,q j,1(z), . . . ,q j,d−1(z)

]
, (1.10)

where [a[0]
j−1(z), . . . ,a[d−1]

j−1 (z)] is the first row of P j−1(z) and (P j(z))� denotes the matrix of Laurent polynomials such that

(P j(z))� = P j(z̄−1)T for z ∈ C\{0}, which is still a matrix of Laurent polynomials. Set

V j(z) :=

⎡⎢⎢⎢⎢⎣
1 −dq j,1(z) −dq j,2(z) · · · −dq j,d−1(z)

0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
0 0 0 · · · 1

⎤⎥⎥⎥⎥⎦ . (1.11)

Then [
d−1,q j,1(z), . . . ,q j,d−1(z)

]
V j(z) = [

d−1,0, . . . ,0
]

and [
a[0]

j−1(z), . . . ,a[d−1]
j−1 (z)

] = [1,0, . . . ,0](dP j(z)�V j(z)
)−1

.

That is, the first row of P j−1(z) is precisely the same as the first row of (dP j(z)�V j(z))−1.
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Now, for the initial step j = r, since Pr(z) = Id is the d × d identity matrix, the functions qr,1(z), . . . ,qr,d−1(z) in
(1.10) for j = r are Laurent polynomials so that the matrix (dPr(z)�Vr(z))−1 with Laurent polynomial entries can be
used to define Pr−1(z). Consequently, qr−1,1(z), . . . ,qr−1,d−1(z) in (1.10) for j = r − 1 are also Laurent polynomials. Hence,
(dPr−1(z)�Vr−1(z))−1 can be used to define Pr−2(z). In general, using the fact that the polynomial matrix P j(z)�V j(z) =:
P�

j(z)� is unimodular (i.e., det(P j(z)�V j(z)) is a nonzero monomial), we can go up the chain as shown in Fig. 1.3 to construct
the filter system(

(a0;b0,1, . . . ,b0,d−1),
(
a1;b�

1,1, . . . ,b�
1,d−1

))
.

This yields a pair of biorthogonal d-wavelet filter systems. But as already mentioned above, a pair of biorthogonal d-wavelet
filters is always associated with an underlying frequency-based dual wavelet pair in the distribution space (see [19] for
detail), we have also obtained a pair of biorthogonal d-wavelet families, at least in the distribution sense. For complete-
ness of our presentation and to facilitate the discussion of our illustrative examples, we will include a brief discussion of
biorthogonal wavelets in L2(R) in Section 2.3.

To appreciate and better understand the approach and motivation of this paper, let us make some remarks. Recall that a
pair of biorthogonal d-wavelet filter systems ((a;b1, . . . ,bd−1), (ã; b̃1, . . . , b̃d−1)) satisfies the duality condition:

P(z)P̃(z)� = d−1 Id, (1.12)

where

P(z) :=

⎡⎢⎢⎢⎢⎣
a[0](z) · · · a[d−1](z)

b[0]
1 (z) · · · b[d−1]

1 (z)
...

. . .
...

b[0]
d−1(z) · · · b[d−1]

d−1 (z)

⎤⎥⎥⎥⎥⎦ , P̃(z) :=

⎡⎢⎢⎢⎢⎣
ã[0](z) · · · ã[d−1](z)

b̃[0]
1 (z) · · · b̃[d−1]

1 (z)
...

. . .
...

b̃[0]
d−1(z) · · · b̃[d−1]

d−1 (z)

⎤⎥⎥⎥⎥⎦ . (1.13)

There are two major tasks in the construction of biorthogonal d-wavelet systems. The first task is to construct a pair (a, ã)

of d-dual filters such that a and ã have some desirable properties such as sum rules and short supports. The second major
task is to derive all the band-pass filters b1, . . . ,bd−1, b̃1, . . . , b̃d−1 from a given pair (a, ã) of d-dual filters so that the pair
((a;b1, . . . ,bd−1), (ã; b̃1, . . . , b̃d−1)) satisfies the duality condition in (1.12).

The first task of constructing pairs of dual filters has been extensively studied in the literature, for example, see [1,5,7,
9,13,14,18,24,30] and the references therein. For a given primal filter, there are several methods available in the literature
for constructing dual filters. Two particular methods are the lifting scheme in [30] and the CBC (coset-by-coset) algorithm
in [1,13,14]. To explain these two methods a little bit in detail, we first look at the particular case d = 2. When d = 2, we
have only one pair of band-pass filters b1 and b̃1, which, by a simple calculation, must take the following form:

b1(z) = cz2n−1ã�(−z), b̃1(z) = 1

c̄
z2n−1a�(−z), (1.14)

where c ∈ C\{0} and n ∈ Z. For simplicity, one often takes c = 1 and n = 1 in (1.14); that is,

b1(z) = zã�(−z), b̃1(z) = za�(−z). (1.15)

Consequently, for the dilation factor d = 2, a pair of biorthogonal 2-wavelet filter systems ((a;b1), (ã; b̃1)) is completely
determined by a pair (a, ã) of 2-dual filters, while their associated band-pass filters b1, b̃1 are almost uniquely deter-
mined by (1.15). Hence, for the case of the dilation factor 2, the major task is to construct a pair (a, ã) of 2-dual
filters with some desirable properties. Suppose that ((a;b), (ã; b̃)) is a given pair of biorthogonal 2-wavelet filter systems.
By a simple argument from linear algebra, one can easily check that (a, ãnew) is a pair of 2-dual filters if and only if
ãnew(z) = ã(z) + �(z2)b̃(z) for some Laurent polynomial �. In terms of pairs of biorthogonal 2-wavelet filter systems, the
old system ((a;b), (ã; b̃)) is updated into a new system ((a;bnew), (ãnew; b̃)), where

ãnew(z) = ã(z) + �
(
z2)

b̃(z), bnew(z) = b(z) − �
(
z2)

a(z). (1.16)

The above scheme in (1.16) is called the lifting scheme [9,30]. To apply (1.16), it requires that all the band-pass filters should
be known in advance. Of course, this is trivial for d = 2 as discussed above. However, for the dilation factor d > 2, it is no
longer trivial any more and the construction of band-pass filters critically lies on the second major task for deriving all
band-pass filters from a given pair of dual filters. Moreover, the new filter ãnew constructed by the lifting scheme in (1.16) is
generally not guaranteed to satisfy any order of sum rules. These shortcomings have been overcome by the CBC algorithm
in [1,13,14]. The CBC algorithm can be applied starting with either a complete pair of biorthogonal wavelet filter systems
or a pair of dual filters without knowing the band-pass filters in advance. To be more specific, let a be a finitely supported
primal filter with at least one finitely supported d-dual filter. For any positive integer n, it is shown in [14, Theorem 3.4] that
a finitely supported d-dual filter ã that satisfies the sum-rule condition of order at least n always exists, meaning that the
symbol ã(z) of ã is divisible by (1 + z + · · · + zd−1)n . Furthermore, such dual filters ã having the shortest possible support,
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with or without any prescribed symmetry property, can be easily constructed by applying the CBC algorithm proposed in
[1,13,14].

For a given primal filter a, to obtain a dual filter ã which has a preassigned order n of sum rules, it is easy to see that
one only needs to solve a system of linear equations. The existence of a solution to such a system of linear equations is
guaranteed by the CBC algorithm as long as the coefficient support of ã is long enough. Consequently, from the point of
view of computation, the first major task for constructing pairs of dual filters can be reduced to a simple task of solving
a system of linear equations. But, the more difficult problem is the second major task for deriving all the band-pass filters
from a pair of dual filters. The main approach used in the literature is to study the matrix extension problem for matrices
of Laurent polynomials. Currently, results on the matrix extension problem of Laurent polynomials have been used to derive
band-pass filters from a pair of dual filters, for example, see [10,17,22,23,28,32,33] and references therein on the matrix
extension problem with or without the symmetry constraint. However, the available algorithms in the literature to obtain
the extension matrix are often quite complicated (for example, see [17,22,23,33]) and such algorithms only work for dimen-
sion one. If the symmetry property is required, then the corresponding algorithms for the matrix extension with symmetry
generally are much more involved and there are many special cases to be considered. For the high-dimensional version of
the matrix extension problem, there are barely any results even in dimension two.

The dual-chain approach proposed in this paper offers a quite simple way to address the two major tasks in the con-
struction of biorthogonal wavelets. The top–down dual-chain in our algorithm can be built by simply solving a system of
linear equations, while the existence of solutions to such a system of linear equations is guaranteed by Theorems 1 and 2.
The bottom–up dual chain is even simpler since there is no system of linear equations involved. In particular, our dual
chain approach keeps the same simplicity for the case of biorthogonal wavelet systems with the symmetry property. More
importantly, the main ideas in our dual chain algorithms can be extended to high-dimensional biorthogonal wavelet sys-
tems. Though the existence of solutions to associated systems of linear equations has not been established so far in high
dimensions, heuristically, a top–down dual chain in our algorithm, with or without the symmetry property, can often be
built easily from many known pairs of high-dimensional dual filters by solving a system of linear equations. Now the same
bottom–up dual-chain can be slightly modified to derive the associated high-dimensional band-pass filters, with or without
the symmetry property. Our approach of using dual chains proposed in this paper provides a simple and computationally
efficient way for constructing biorthogonal wavelets.

This paper is organized as follows. In Section 2, we introduce some necessary notations and describe our main results
in terms of three theorems and two algorithms. Several examples are included in Section 3 to illustrate the effectiveness of
the algorithms formulated in Section 2. Proofs of the results stated in Section 2 will be provided in Section 4, where two
key lemmas are formulated and constructive proofs are given. Final remarks are stated in Section 5 for the interested reader
for further study and investigation.

2. Main results

To facilitate the formulation of our main results in this paper, we first introduce the necessary notations and definitions.
In this paper, the dilation factor is an arbitrary integer d � 2 which will be fixed throughout our presentation. We will

always consider the scalar fields F = R and F = C of real and complex numbers, respectively, although the same results
are valid for other scalar fields, such as F = Q, the field of rational numbers. All sequences u in this paper are assumed to
be finite sequences; that is, u : Z → F is finitely supported on Z. For such sequences, we will use the notation u(k) for the
kth term (or component) of the sequence u and write u = {u(k)}k∈Z . The symbol of this sequence u is defined in (1.5). If
u(m)u(n) �= 0 and u(k) = 0 for all k < m or k > n, then u(z) is a Laurent polynomial of (Laurent polynomial) order (n−m+1)

or (Laurent polynomial) degree (n − m), and we will also call the interval [m,n] the coefficient support interval of u(z) (or
of the sequence u itself), and write suppintv(u) := [m,n] to denote the support interval of the coefficient sequence u. The
length of suppintv(u) will be defined by |suppintv(u)| := n − m. Hence, the support interval of a sequence with a single
nonzero term has length zero. On the other hand, when u is considered as a (digital) filter (and the terms of the sequence
are called filter taps), the number of filter taps of the filter u, denoted by #(u), is given by |suppintv(u)| + 1.

2.1. Dual-chain without symmetry constraint

Let us first discuss the construction of filter systems which do not necessarily have the symmetry property.
A family {a j | j = 0, . . . , r} of finite sequences is said to constitute a chain of consecutive d-dual filters (or dual-chain, for

short), denoted by: a0 → a1 → ·· · → ar−1 → ar , if the chain satisfies the following conditions:

(1) each (a j,a j+1) is a pair of d-dual filters, i.e., (a j,a j+1) satisfies (1.4) with u = a j and ũ = a j+1, for j = 0, . . . , r − 1;
(2) suppintv(a j+1) � suppintv(a j) for j = 1, . . . , r − 1;
(3) ar(z) = t0zc0 for some nonzero constant t0 ∈ F and some c0 ∈ Z, where ar(z) is the symbol of ar .

Item (1) describes the duality property of the top–down dual chain, while Item (2) ensures that the length of the
coefficient support interval of a j is strictly decreasing as the integer index j increases, so that the chain terminates with a
one-tap filter, as precisely stated in Item (3).
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Given a pair (a, ã) of d-dual filters (i.e., a, ã satisfy (1.4) with u = a and ũ = ã), the following theorem assures the
existence of a chain of consecutive d-dual filters.

Theorem 1. Let (a, ã) be a pair of d-dual filters. Then there exists a sequence of finitely supported filters a0,a1, . . . ,ar such that
a0 → a1 → ·· · → ar−1 → ar is a chain of consecutive d-dual filters with (a0,a1) = (a, ã).

When the construction of the chain of consecutive d-dual filters has been completed, we now begin to construct the
corresponding chain of d-dual wavelet filter systems, by starting from the bottom, and using the last filter sequences
(ar;br,1, . . . ,br,d−1), where, as described in Section 1, the new wavelet filter components br,1, . . . ,br,d−1 are simply the gov-
erning sequences of the d − 1 lazy wavelets corresponding to the scaling function δ(x) (if ar = δ = {δ(k)}k∈Z). An overview
of the method of construction of the other new wavelet filter components br−1,1, . . . ,br−1,d−1 is also given in Section 1, see
(1.16)–(1.19), with j = r. From this initial filter system, we may now build the bottom–up chain, as illustrated in Fig. 1.3, the
construction of which is also highlighted in Section 1 in (1.16)–(1.19), but now iteratively from j = r − 1, to j = r − 2, and
finally to j = 1, to complete the construction of the desired d-dual wavelet filter systems. The description in Section 1 is
formulated as Algorithm 1 to be stated below.

The approach introduced in this paper is the construction of two chains: the first being the top–down chain for con-
structing the dual filter pair (ar−1,ar), while the second being the bottom–up chain for constructing the dual wavelet filter
systems (b1, . . . ,bd−1) and (b̃1, . . . , b̃d−1), associated with a given dual filter pair (a, ã). We may also call these two chains
a dual pair of chains (or “dual-chain” for short). In other words, the term “dual-chain” in the title of this paper actually has
two meanings: with the first being the two chains of dual filters, and the second being the duality of the top–down and
bottom–up chains.

For a given integer k ∈ Z, ρk and λk are the two integers uniquely determined by the relation k = dλk + ρk with 0 �
ρk � d − 1; that is, λk = �k/d� and ρk = k − dλk , where �·� is the floor operator. For an interval [m,n] with m � n, we define
min{[m,n]} = m and max{[m,n]} = n.

Algorithm 1. Dual-chain algorithm for the construction of dual filter systems (without symmetry constraint).

(a) Input: (a, ã), a pair of d-dual filters.
(b) Top-down chain: This part of the algorithm produces a top–down chain a0 → a1 → ·· · → ar−1 → ar , see Fig. 1.3 (left)

or Fig. 1.2.
1: In order to construct a top–down chain with as few number of filters as possible, swap a and ã, if necessary, such that

|suppintv(a)| � |suppintv(ã)|.
2: (a0,a1) ← (a, ã). j ← 1.
3: while |suppintv(a j)| �= 0 do
4: a j+1 ← a j−1.

m ← min{suppintv(a j)}. n ← max{suppintv(a j)}. m̃ ← min{suppintv(a j+1)}.
5: while m̃ < m do
6: Construct b through its symbol b(z) := ∑d−1

γ =0 zγ b[γ ](zd), where

b[γ ](z) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a j+1(m̃)

a j(n)
a
[ρm̃]
j (z)� · zλm̃+λn , γ = ρn;

−a j+1(m̃)

a j(n)
a
[ρn]
j (z)� · zλm̃+λn , γ = ρm̃;

0, otherwise.

Here, a j = {a j(k)}k∈Z , a j+1 = {a j+1(k)}k∈Z , and a j(z) is the symbol of a j .
7: a j+1 ← a j+1 + b.

m̃ ← min{suppintv(a j+1)}.
8: end while
9: ñ ← max{suppintv(a j+1)}.

10: while ñ � n do
11: Construct b through its symbol b(z) := ∑d−1

γ =0 zγ b[γ ](zd), where

b[γ ](z) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a j+1(ñ)

a j(m)
a
[ρñ]
j (z)� · zλñ+λm , γ = ρm;

−a j+1(ñ)

a j(m)
a
[ρm]
j (z)� · zλñ+λm , γ = ρñ;

0, otherwise.

12: a j+1 ← a j+1 + b.
ñ ← max{suppintv(a j+1)}.



Author's personal copy

C.K. Chui et al. / Appl. Comput. Harmon. Anal. 33 (2012) 204–225 211

13: end while
14: j ← j + 1.
15: end while
(c) Bottom-up chain: This part of the algorithm is for constructing a bottom–up chain of dual filter systems, see Fig. 1.3

(right).
16: r ← j. Then the symbol ar(z) of ar is a monomial, i.e., ar(z) = t0zc0 for some t0 ∈ F and some c0 ∈ Z. Define the

band-pass filters br,1, . . . ,br,d−1 through their symbols given by br,1(z) := zc0+1, . . . ,br,d−1(z) := zc0+d−1, respectively.
17: j ← r.
18: while j � 1 do
19: Construct the polyphase matrix with respect to (a j;b j,1, . . . ,b j,d−1) as in (1.9).

20: Let a j−1(z) be the symbol of a j−1 and define p(z) := [a[0]
j−1(z), . . . ,a[d−1]

j−1 (z)]. Then p(z)P j(z)� = [d−1,q1(z), . . . ,
qd−1(z)] for some Laurent polynomials q1(z), . . . ,qd−1(z).

21: Define V (z) as in (1.11) with its first row being given by [1,0, . . . ,0]V (z) = [1,−dq1(z), . . . ,−dqd−1(z)]. Then
p(z)P j(z)�V (z) = [d−1,0, . . . ,0].

22: P�

j(z) := V (z)�P j(z) and P j−1(z) := [dP j(z)�V (z)]−1 are of the form:

P j−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
a[0]

j−1(z) · · · a[d−1]
j−1 (z)

b[0]
j−1,1(z) · · · b[d−1]

j−1,1(z)
...

. . .
...

b[0]
j−1,d−1(z) · · · b[d−1]

j−1,d−1(z)

⎤⎥⎥⎥⎥⎥⎥⎦ , P�

j(z) =

⎡⎢⎢⎢⎢⎢⎢⎣
a�[0]

j (z) · · · a�[d−1]
j (z)

b�[0]
j,1 (z) · · · b�[d−1]

j,1 (z)
...

. . .
...

b�[0]
j,d−1(z) · · · b�[d−1]

j,d−1 (z)

⎤⎥⎥⎥⎥⎥⎥⎦ .

23: Construct band-pass filters b j−1,1, . . . ,b j−1,d−1 and b�

j,1, . . . ,b�

j,d−1 such that their symbols are given by b�

j,1(z) :=∑d−1
γ =0 zγ b

�[γ ]
j,1 (zd), . . . ,b�

j,d−1(z) := ∑d−1
γ =0 zγ b

�[γ ]
j,d−1(zd) and b j−1,1(z) := ∑d−1

γ =0 zγ b
[γ ]
j−1,1(zd), . . . ,b j−1,d−1(z) :=∑d−1

γ =0 zγ b
[γ ]
j−1,d−1(zd), respectively, from rows of P�

j(z) and P j−1(z).
24: j ← j − 1.
25: end while
(d) Output: a chain of dual filter systems with the perfect reconstruction property, see Fig. 1.3.

2.2. Dual-chain with symmetry constraint

In Theorem 1 and Algorithm 1, we have not considered the symmetry issue in the top–down and bottom–up procedures
(see Fig. 1.3). Thus, symmetry of the output wavelet filter systems is not guaranteed. In the following, we shall discuss the
notion of symmetry and develop an algorithm, namely Algorithm 2, for constructing a corresponding dual wavelet filter
systems that preserve the symmetry property of the given dual filter pair.

A finite sequence u = {u(k)}k∈Z is said to be symmetric (about c/2), if

u(c − k) = u(k), ∀k ∈ Z, (2.1)

and anti-symmetric or skew symmetric (about c/2), if

u(c − k) = −u(k), ∀k ∈ Z, (2.2)

for some integer c ∈ Z, where c/2, which could be a half-integer, is called the symmetry center of u. Furthermore, two filters
u and v are said to have the same symmetry pattern, if u and v are both symmetric as in (2.1), or else both anti-symmetric
as in (2.2), about the same symmetry center c/2 for some c ∈ Z.

Let u(z) be the symbol of u. Then by using the symmetry operator S as defined in [20] by

Su(z) := u(z)

u(1/z)
, z ∈ C\{0},

it is clear that the sequence u is symmetric about c/2 if and only if Su(z) = zc , and anti-symmetric about c/2 if and only if
Su(z) = −zc . Moreover, we see that two filters u and v have the same symmetry pattern, if and only if their corresponding
symbols u(z) and v(z) satisfy the identity Su(z) = Sv(z) = εzc on the unit circle, for some ε ∈ {1,−1} and some c ∈ Z.

A family {a j | j = 0, . . . , r} of finite sequences is said to constitute a chain of consecutive d-dual filters with certain symmetry
pattern (or dual-chain with symmetry, for short), denoted by: a0 → a1 → ·· · → ar−1 → ar , if the chain satisfies the following
conditions:

(0) all filters a0, . . . ,ar have the same symmetry pattern: Sa0(z) = · · · = Sar(z) = εzc for some ε ∈ {−1,1} and some c ∈ Z;
(1) each (a j,a j+1) is a pair of d-dual filters, i.e., (a j,a j+1) satisfies (1.4) with u = a j and ũ = a j+1, for j = 0, . . . , r − 1;
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(2) suppintv(a j+1) � suppintv(a j) for all j = 1, . . . , r − 1;
(3) ar has no more than two nontrivial polyphase components. Precisely, ar satisfies one of the following:

(i) ar has a single filter tap, namely: ar(z) = t0zc/2 for some nonzero constant t0 ∈ F;
(ii) ar has exactly two nontrivial polyphase components a[β](z) and a[γ ](z) such that ar(z) = zβa[β](zd) + zγ a[γ ](zd).

The second theorem in this section, to be stated as Theorem 2 below, assures that all the filters in the top–down
dual-chain a0 → a1 → ·· · → ar with (a0,a1) = (a, ã) preserve the symmetry property (of being either symmetric or anti-
symmetric) of the given dual filter pair (a, ã). This result will be applied to preserve the symmetry property of (a, ã), by
the output dual wavelet filter systems (b1, . . . ,bd−1), (b̃1, . . . , b̃d−1), by applying the bottom–up algorithm, to be described
in Algorithm 2 below.

Theorem 2. Let (a, ã) be a pair of d-dual filters such that a and ã have the same symmetry pattern: Sa(z) = Sã(z) = εzc for some ε ∈
{−1,1} and some c ∈ Z. Then there exists a sequence of finitely supported filters a0,a1, . . . ,ar such that Sa0(z) = · · · = Sar(z) = εzc

and a0 → a1 → ·· · → ar−1 → ar is a chain of consecutive d-dual filters with symmetry, where (a0,a1) = (a, ã).

We remark that in Theorem 2, if either c is an odd integer, or c is an even integer but with ε = −1, then ar must satisfy
(ii) of Item (3). Moreover, the degrees of a[β](z) and a[γ ](z) in (ii) of Item (3) could be arbitrarily large. On the other hand,
if the integer c is even and ε = 1, then ar could satisfy either (i) or (ii) of Item (3).

We also remark that a dual filter ã = {ã(k)}k∈Z of a given symmetric or anti-symmetric primal filter a = {a(k)}k∈Z , in
general, does not necessarily have any symmetry pattern as a. However, if a and its dual ã have certain symmetry, say,
Sa(z) = εzc and Sã(z) = ε̃zc̃ for some ε, ε̃ ∈ {−1,1} and some c, c̃ ∈ Z, then it is quite natural to assume that ε̃ = ε and
c̃ = c, namely, Sa = Sã. This point of view could be argued as follows. Let u be the sequence with symbol a(z)ã(z)� . Since
(a, ã) is a dual pair, u is interpolatory, so that u(0) = d−1 and u(dk) = 0 for all k ∈ Z\{0}. In other words, u[0] = δ. By
Sa(z) = εzc and Sã(z) = ε̃zc̃ , it follows directly from u(z) = a(z)ã(z)� that Su(z) = εε̃zc−c̃ , that is,

u(c − c̃ − k) = εε̃u(k), ∀k ∈ Z. (2.3)

We consider two cases. If c − c̃ is a multiple of d, then since u is interpolatory, it follows directly from (2.3) that we
must have c̃ = c and ε̃ = ε . Consequently, for this case, we must have Sa = Sã.

If c − c̃ is not a multiple of d, then since u is interpolatory (or u[0] = δ), it follows directly from (2.3) that u[c−c̃] = εε̃δ.
Since u[0] and u[c−c̃] are two distinct coset sequences with a single tap, u does not satisfy the sum-rule condition with
order greater than 1. This implies that not both a and its dual ã could satisfy the sum-rule condition at all. In other words,
for the filter pair to satisfy the sum-rule condition and certain symmetry constraint, u must satisfy the sum-rule condition
of order at least 2; and hence, Sa = Sã.

On the other hand, if a primal filter a satisfies the symmetry property: Sa(z) = εzc , but its dual filter ã so constructed is
not symmetric or anti-symmetric, then we can employ the simple symmetrization scheme

ãsym(k) = (
ã(k) + εã(c − k)

)
/2, k ∈ Z, (2.4)

since it is clear that ãsym is also a d-dual of a. Furthermore, it follows from the equivalent formulation ãsym(z) = (ã(z) +
εzc ã(1/z))/2 of (2.4) that Sãsym(z) = Sa(z) = εzc ; that is, ãsym has the same symmetry pattern as a.

Hence, in the development of our dual-chain algorithm with the symmetry constraint, we always assume that both
filters of a given dual pair have the same symmetry pattern. In the following algorithm, we build the dual top–down and
bottom–up chains that meet the symmetry constraint requirement.

Algorithm 2. Dual-chain algorithm for the construction of dual filter systems (with symmetry constraint).

(a) Input: (a, ã), a pair of d-dual filters such that a and ã have the same symmetry pattern: Sa(z) = Sã(z) = εzc for some
ε ∈ {−1,1} and some c ∈ Z.

(b) Top–down chain: This part of the algorithm produces a top–down chain a0 → a1 → ·· · → ar , see Fig. 1.3 (left). Each
a j, j = 2, . . . , r preserves the symmetry pattern of a and ã: Sa j(z) = εzc for j = 2, . . . , r with a j(z) being the symbol
of a j .

1: In order to construct a top–down chain with as few number of filters as possible, swap a and ã, if necessary, such that
|suppintv(a)| � |suppintv(ã)|.

2: (a0,a1) ← (a, ã). j ← 1.
3: Set Γ := ∅ to be the empty set. Then the cardinality #(Γ ) = 0.
4: for γ = 0 to d − 1 do if a

[γ ]
j (z) �= 0 then Γ ← Γ ∪ {γ }. end if end for

5: while (|suppintv(a j)| � 2 and #(Γ ) > 2) do
6: a j+1 ← a j−1.

m ← min{suppintv(a j)}. n ← max{suppintv(a j)}. m̃ ← min{suppintv(a j+1)}.
7: while m̃ < m do Perform Line 6 and Line 7 of Algorithm 1. end while
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8: ñ ← max{suppintv(a j+1)}.
9: while ñ � n do Perform Line 11 and Line 12 of Algorithm 1. end while

10: m̃ ← min{suppintv(a j+1)}. ñ ← max{suppintv(a j+1)}.
11: if m̃ = m then
12: Choose any � ∈ Z such that ρ� ∈ Γ and ρ� /∈ {ρm,ρn}. Let m1,n1, �1 be the lowest degrees of the Laurent poly-

nomials zρm a
[ρm]
j (zd), zρn a

[ρn]
j (zd), zρ� a

[ρ�]
j (zd), respectively. Let m2,n2, �2 be the highest degrees of the Laurent

polynomials zρm a
[ρm]
j (zd), zρn a

[ρn]
j (zd), zρ�a

[ρ�]
j (zd), respectively (see (4.2)).

13: Define ṽ1 and ṽ2 through their symbols ṽ1(z) := ∑d−1
γ =0 zγ ṽ

[γ ]
1 (zd) and ṽ2(z) := ∑d−1

γ =0 zγ ṽ
[γ ]
2 (zd), where

ṽ
[γ ]
1 (z) :=

⎧⎪⎨⎪⎩
a
[ρn]
j (z)� · zλm1 +λn2 , γ = ρm;

−a
[ρm]
j (z)� · zλm1 +λn2 , γ = ρn;

0, otherwise,

ṽ
[γ ]
2 (z) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a j(m1)

a j(�1)
· a

[ρ�]
j (z)� · zλ�1 +λn2 , γ = ρn;

− a j(m1)

a j(�1)
· a

[ρn]
j (z)� · zλ�1 +λn2 , γ = ρ�;

0, otherwise.

14: b ← ṽ1 + ṽ2. α ← ρ�1−n1 . k0 ← λ�1−n1 .
15: for κ = 0 to k0 do
16: Construct ṽ through its symbol ṽ(z) := ∑d−1

γ =0 zγ ṽ[γ ](zd) with

ṽ[γ ](z) :=

⎧⎪⎨⎪⎩
Cκ z−κa

[ρ�]
j (z)� · zλm1 +λn2 −λn1 +λ�1 , γ = ρm;

−Cκ z−κa
[ρm]
j (z)� · zλm1 +λn2 −λn1 +λ�1 , γ = ρ�;

0, otherwise,

where Cκ := b(n2+�1−n1−dκ)

a j(m1)
.

17: b ← b + ṽ .
18: end for
19: a j+1 ← a j+1 − a j+1(m)

b(m)
b.

20: end if
21: Let a j+1(z) be the symbol of a j+1 and construct asym

j+1 whose symbol asym
j+1(z) is defined to be asym

j+1(z) := (a j+1(z) +
εzca j+1(1/z))/2.

22: a j+1 ← asym
j+1. Γ := {}.

23: for γ = 0 to d − 1 do if a
[γ ]
j+1(z) �= 0 then Γ ← Γ ∪ {γ }. end if end for

24: j ← j + 1.
25: end while
(c) Bottom–up chain: This part of the algorithm constructs a bottom–up chain of dual filter systems with symmetry, see

Fig. 1.3 (right).
26: r ← j.

Either ar has only one tap: ar(z) = t0zc/2 for some nonzero constant t0 ∈ F; or ar has exactly two nontrivial polyphase
components: ar(z) = zβa[β]

r (zd) + zγ a
[γ ]
r (zd) for some 0 � β < γ � d − 1.

27: W ← Id . Id is the d × d identity matrix.
28: for γ = 0 to d − 1 do
29: if γ < ρc−γ then

30:

[W ]{γ +1,ρc−γ +1},{γ +1,ρc−γ +1} := 1

2

[
1 1
1 −1

]
,

where [T ]{ j1, j2},{ j1, j2} := M is a 2 × 2 submatrix of T such that [M]k,� = [T ] jk, j� for k, � = 1,2. [T ] j,k is the ( j,k)-
entry of the matrix T .

31: end if
32: end for
33: if ar(z) = t0zc/2 then

34: W0(z) ← W and [W0(z)]ρc/2,ρc/2 ← a
[ρc/2]
r (z)

35: else
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36: W0(z) ← W and

[
W0(z)

]
{β,γ },{β,γ } ← 1

2

[
a[β]

r (z) a
[γ ]
r (z)

a
[γ ]
r−1(z)� −a

[β]
r−1(z)�

]
,

where ar−1(z) is the symbol of ar−1.
37: end if
38: Let E be a permutation matrix such that the first row of EW0(z) is the polyphase vector [a[0]

r , . . . ,a[d−1]
r ] of ar . Pr(z) ←

EW0(z). Then Pr(z) is of the form:

Pr(z) :=

⎡⎢⎢⎢⎢⎣
a[0]

r (z) · · · a[d−1]
r (z)

b[0]
r,1(z) · · · b[d−1]

r,1 (z)
...

. . .
...

b[0]
r,d−1(z) · · · b[d−1]

r,d−1(z)

⎤⎥⎥⎥⎥⎦ .

Define band-pass filters br,1, . . . ,br,d−1 so that their symbols are given by br,1(z) := ∑d−1
γ =0 zγ b

[γ ]
r,1 (zd), . . . ,br,d−1(z) :=∑d−1

γ =0 zγ b
[γ ]
r,d−1(zd), respectively.

39: j ← r.
40: while j � 1 do Perform Lines 19–24 of Algorithm 1. end while
(d) Output: a chain of dual filter systems with the perfect reconstruction property and with symmetry, see Fig. 1.3.

In both Algorithms 1 and 2, we have presented a step-by-step procedure in Step (b) for the construction of a desirable
a j+1 from a j and a j−1. We remark, however, that this step can be replaced by solving an associated system of linear equa-
tions, and the desirable filter a j+1 (with or without the symmetry constraint) so obtained not only satisfies the requirement
that a j+1 is d-dual of a j and suppintv(a j+1) � suppintv(a j), but its filter length |suppintv(a j+1)| is also the smallest. This
system of linear equations is guaranteed to have a solution in view of the existence results in Theorems 1 and 2. As a
consequence of replacing Step (b) with this alternative step, the shortest dual chain is achieved.

We also point out the matrix V (z) in Step (c) of Algorithms 1 and 2 is not uniquely determined and there are many
different choices of such V (z). Consequently, various choices of V (z) lead to band-pass filters with varying length and the
particular simple choice of V (z) in Step (c) of Algorithms 1 and 2 may not lead to band-pass filters with the shortest
possible support intervals. To have band-pass filters with short support intervals, some simple tuning on the structure of
V (z) might be needed; or we can perform some simple postprocessing (such as simple linear combinations) on the newly
constructed wavelet filter systems ((a j; �b j), (a j+1; �b j+1)) in Step (c) of Algorithms 1 and 2 so that their support intervals
are balanced and short.

2.3. Biorthogonal wavelets in L2(R)

For a pair ((a;b1, . . . ,bd−1), (ã; b̃1, . . . , b̃d−1)) of biorthogonal d-wavelet filter systems that satisfies
∑

k∈Z a(k) =∑
k∈Z ã(k) = 1, it is shown in [19] that the pair is always associated with an underlying pair of frequency-based dual

d-framelets in the distribution space. In this subsection, we shall discuss biorthogonal wavelets in L2(R) that are associated
with biorthogonal wavelet filter systems. Let us first recall some notations and definitions. For a function f : R → C,

fλ;k := |λ|1/2 f (λ · −k), λ ∈ R\{0}, k ∈ R.

Let N0 := N ∪ {0}. The square-integrable functions φ,ψ1, . . . ,ψ s in L2(R) are said to generate a nonhomogeneous d-wavelet
system:

WS0
(
φ;ψ1, . . . ,ψ s) := {

φ(· − k)
∣∣ k ∈ Z

} ∪ {
ψ�

d j;k
∣∣ j ∈ N0, k ∈ Z, � = 1, . . . , s

}
(see [19]). For square-integrable functions φ,ψ1, . . . ,ψ s and φ̃, ψ̃1, . . . , ψ̃ s , we say that({

φ;ψ1, . . . ,ψ s},{
φ̃; ψ̃1, . . . , ψ̃ s})

(2.5)

generates a pair of biorthogonal d-wavelet bases in L2(R), if(
WS0

(
φ;ψ1, . . . ,ψ s),WS0

(
φ̃; ψ̃1, . . . , ψ̃ s))

is a pair of biorthogonal bases in L2(R); that is, each of the systems WS0(φ;ψ1, . . . ,ψ s) and WS0(φ̃; ψ̃1, . . . , ψ̃ s) is a Riesz
basis of L2(R) and the two systems are biorthogonal to each other in L2(R). Consequently, the following identity holds:

〈 f , g〉 =
∑
k∈Z

〈
f , φ(· − k)

〉〈
φ̃(· − k), g

〉 + ∞∑
j=0

s∑
�=1

∑
k∈Z

〈
f ,ψ�

d j;k
〉〈
ψ̃�

d j;k, g
〉
, f , g ∈ L2(R).
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It has been shown in [19] that if the pair in (2.5) generates a pair of biorthogonal d-wavelet bases in L2(R), then we must
have s = d − 1. See [1,7,10,11,13,14,16,18,21,25,29,32,33] for biorthogonal wavelets in L2(R).

For 0 < α � 1 and 1 � p � ∞, we say that f ∈ Lip(α, L p(R)) if there is a constant C such that ‖ f − f (· − h)‖Lp(R) � Chα

for all h > 0. The smoothness of a function f in L p(R) is measured by

νp( f ) := sup
{
n + α

∣∣ n ∈ N0, 0 < α � 1, f (n) ∈ Lip
(
α, Lp(R)

)}
,

where f (n) denotes the nth derivative of f .
In order to state the result on biorthogonal d-wavelets in L2(R) associated with biorthogonal d-wavelet filter banks, we

also need to recall a quantity νp(a,d) for a low-pass filter a and 1 � p � ∞. Since the symbol a of a is a Laurent polynomial,
we can write a(z) = (1 + z + · · ·+ zd−1)mQ(z) for some Laurent polynomial Q such that (1 + z + · · ·+ zd−1) � Q(z). Following
[15, p. 61 and Proposition 7.2], we may define

νp(a,d) := 1/p − 1 − logd

(
lim sup

n→∞
‖Q n‖1/n

�p(Z)

)
, 1 � p � ∞,

where ‖Q n‖p
�p(Z)

:= ∑
k∈Z |Q n(k)|p and

∑
k∈Z Q n(k)zk := Q(z)Q(zd) · · ·Q(zdn−1

). It has been proved in [15, Theorem 4.3] that

the cascade algorithm with some mask (low-pass filter) a and a dilation factor d converges in L p(R) (as well as C(R) when
p = ∞) if and only if νp(a,d) > 0. Let φ be the compactly supported normalized d-refinable distribution with mask a and

dilation d such that φ̂(ξ) := ∏∞
j=1 a(e−id− jξ ). In general, we have νp(a,d) � νp(φ). If the integer shifts of φ form a Riesz

system, then νp(a,d) = νp(φ). The quantity νp(a,d) plays an important role in the study of the convergence of cascade
algorithms and smoothness of refinable functions, see [15,16] and the references therein on these topics. Moreover, when
p = 2, we also have

ν2(a,d) = −1/2 − logd

√
ρ(a,d), (2.6)

where ρ(a,d) denotes the spectral radius of the square matrix (u(d j − k))−K� j,k�K , where K := � N
d−1 � and Q(z)Q(z)� =:∑k=N

k=−N u(k)zk (see [12, Theorem 2.1]).
In what follows, let

(a;b1, . . . ,bd−1) := (a0;b0,1, . . . ,b0,d−1),

(ã; b̃1, . . . , b̃d−1) := (
a1;b�

1,1, . . . ,b�
1,d−1

)
, (2.7)

where ((a0;b0,1, . . . ,b0,d−1), (a1;b�
1,1, . . . ,b�

1,d−1)) is computed by applying the bottom–up procedure in Algorithm 1 or 2

(see also Fig. 1.3). Define a pair of generators ({φ;ψ1, . . . ,ψd−1}, {φ̃; ψ̃1, . . . , ψ̃d−1}) of distributions associated with
(a;b1, . . . ,bd−1) and (ã; b̃1, . . . , b̃d−1) as follows.

φ̂(ξ) :=
∞∏
j=1

a
(
e−id− jξ

)
and ˆ̃

φ(ξ) :=
∞∏
j=1

ã
(
e−id− jξ

)
, ξ ∈ R (2.8)

and

ψ�(x) := d
∑
k∈Z

b�(k)φ(dx − k) and ψ̃�(x) := d
∑
k∈Z

b̃�(k)φ̃(dx − k), (2.9)

for � = 1, . . . ,d − 1. Then, we have the following result.

Theorem 3. Let (a, ã) be a pair of d-dual filters. Then the filter systems (a;b1, . . . ,bd−1) and (ã; b̃1, . . . , b̃d−1) defined in (2.7) satisfy
the duality property:

P(z)P̃(z)� = d−1 Id, (2.10)

where P(z) and P̃(z) are defined as in (1.13). In addition, if a and ã have the same symmetry pattern:

Sa(z) = Sã(z) = ε0zc0 , ε0 ∈ {1,−1}; c0 ∈ Z, (2.11)

then all band-pass filters b j and b̃ j have the symmetry patterns:

Sb1(z) = Sb̃1(z) = ε1zc1 , . . . , Sbd−1(z) = Sb̃d−1(z) = εd−1zcd−1 (2.12)

for some ε j ∈ {1,−1} and some c j ∈ Z, j = 1, . . . ,d − 1. Furthermore, if
∑

k∈Z a(k) = ∑
k∈Z ã(k) = 1 (that is, a and ã are low-pass

filters) and ν2(a,d) > 0, ν2(ã,d) > 0, then the pair({
φ;ψ1, . . . ,ψd−1}

,
{
φ̃; ψ̃1, . . . , ψ̃d−1})

(2.13)
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defined by (2.8) and (2.9) generates a pair of biorthogonal d-wavelet bases in L2(R). Moreover, if (2.11) and (2.12) are satisfied,
then the biorthogonal system (2.13) associated with the dual filter bank system ((a;b1, . . . ,bd−1), (ã; b̃1, . . . , b̃d−1)) has the following
symmetry property:

φ = φ

(
c0

d − 1
− ·

)
, φ̃ = φ̃

(
c0

d − 1
− ·

)
(2.14)

and

ψ1 = ε1ψ
1
(

c1

d
+ c0

d(d − 1)
− ·

)
, . . . , ψd−1 = εd−1ψ

d−1
(

cd−1

d
+ c0

d(d − 1)
− ·

)
,

ψ̃1 = ε1ψ̃
1
(

c1

d
+ c0

d(d − 1)
− ·

)
, . . . , ψ̃d−1 = εd−1ψ̃

d−1
(

cd−1

d
+ c0

d(d − 1)
− ·

)
. (2.15)

Proof. The duality property in (2.10) is a consequence of our bottom–up construction. In fact, for each j = 1, . . . , r, the
polyphase matrices P j−1(z) and P�

j(z) (see Fig. 1.3) for the filter systems (a j−1;b j−1,1, . . . ,b j−1,d−1) and (a j;b�

j,1, . . . ,b�

j,d−1),

respectively, satisfy the identities P j−1(z)P�

j(z)� = d−1 Id , thereby P(z) = P0(z) and P̃(z) = P�
1(z) satisfy (2.10). Since (a, ã) is

a pair of d-dual filters, by applying [16, Theorem 3.1] or [15], both φ and φ̃ are compactly supported refinable functions
in L2(R) and their integer shifts are biorthogonal to each other. By [16, Theorem 3.1], (2.13) generates a pair of biorthogonal
d-wavelet bases in L2(R). The proof of symmetry property of the dual filter system ((a;b1, . . . ,bd−1), (ã; b̃1, . . . , b̃d−1))

follows from [12, Lemmas 4.1 and 4.2] or [22, Proofs of Lemma 1 and Algorithm 1]. �
Note that the time-domain formulation of the matrix identity in (2.10) is given by:∑

k∈Z
a(k)ã(d j + k) = d−1δ( j), j ∈ Z;

∑
k∈Z

b�(k)b̃�′(d j + k) = d−1δ( j)δ
(
� − �′), j ∈ Z; �, �′ = 1, . . . ,d − 1;

∑
k∈Z

a(k)b̃�(d j + k) = 0, j ∈ Z, � = 1, . . . ,d − 1;
∑
k∈Z

b�(k)ã(d j + k) = 0, j ∈ Z, � = 1, . . . ,d − 1.

The interested reader is referred to [12,17,22] for general discussion on the symmetry property of filter banks. For more
references on biorthogonal and orthogonal wavelets in L2(R), see [1,2,5,6,8,9,12,17,22,23,26–28,30,32,33].

3. Illustrative examples

In this section, we will illustrate our algorithms and results stated in Section 2 by examples of wavelet filter systems for
cardinal B-splines as well as by applying the CBC algorithm to construct d-dual filter pairs. We will only consider dilation
factors d = 3 and d = 4. Since the length of the coefficient support interval of the dual ã is generally longer than that of a,
we will choose the initial dual pair (a0,a1) = (ã,a) for the top–down dual chain to minimize the number of iterative steps.

In the first two examples, a will denote the d-refinement sequence of the (centered) cardinal B-splines under considera-
tion, with the desirable dual filter denoted by ã. In terms of their symbols a(z) and ã(z), we select a dual filter ã such that
a(z)ã(z)� = aI

2n(z) defined in (1.3) for some suitable integer n.

Example 1. Let the dilation factor be d = 3 and consider the refinement sequence a of the centered cardinal linear B-spline
N2(· + 1). By splitting the mask aI

4 in (1.3) with n = 2 as described above, we obtain the desired dual pair (a, ã), with
symbols a(z), ã(z) given by

a(z) :=
(

1 + z + z2

3

)2

z−2, ã(z) :=
(

1 + z + z2

3

)2

z−2p̃0(z)

where p̃0(z) = 1
3 (−4z + 11 − 4z−1). Note that the coefficient support interval of a is [−2,2], and that of ã is [−3,3]. Both a

and ã are symmetric about 0: Sa = Sã = 1.
By Lemma 2 in Section 4 (or the top–down chain in Algorithm 2), we obtain a chain of consecutive 3-dual filters

a0 → a1 → a2 with a0 = ã, a1 = a, and a2 = δ.
Since a2 = δ, it is easy to construct the band-pass filters b2,1,b2,2 by the following unimodular polyphase matrix P2(z):
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P2(z) = 1

2

[ 2 0 0
0 1 1
0 1 −1

]
;

that is, the symbols of b2,1 and b2,2 are b2,1(z) = 1
2 (z + z2) and b2,2(z) = 1

2 (z − z2). Note that b2,1 is symmetric about 3/2:
Sb2,1(z) = z3, while b2,2 is anti-symmetric about 3/2: Sb2,2(z) = −z3.

Next by applying Algorithm 2 to construct the bottom–up chain, we can derive the band-pass filters for the given pair
(a, ã), such that the pair ((a;b1,b2), (ã; b̃1, b̃2)) constitutes a dual filter system with the perfect reconstruction property. The
symbols b1(z),b2(z) and b̃1(z), b̃2(z) of b1,b2 and b̃1, b̃2 are given by

b1(z) = q1(z) + z3q1
(
z−1)

, b2(z) = q2(z) − z3q2
(
z−1)

,

b̃1(z) = q̃1(z) + z3q̃1
(
z−1)

, b̃2(z) = q̃2(z) − z3q̃2
(
z−1)

,

with

q1(z) = 1

27

(
6z2 − 3z3 − 2z4 − z5)

, q2(z) = 1

81

(−26z2 + 3z3 + 2z4 + z5)
,

q̃1(z) = −1

2
(1 − z), q̃2(z) = −1

6
(1 − 3z).

Note that b1 and b̃1 are both symmetric about 3/2: Sb1(z) = Sb̃1(z) = z3, while b2 and b̃2 are both anti-symmetric about
3/2: Sb2(z) = Sb̃2(z) = −z3. Also, suppintv(b1) = suppintv(b2) = [−2,5] and suppintv(b̃1) = suppintv(b̃2) = [0,3].

Moreover, by calculation (see (2.6)), we have ν2(a,3) = −1/2− log3(
√

1/81) = 1.5 and ν2(ã,3) = −1/2− log3(
√

17/81) ≈
0.2105. Hence, it follows from Theorem 3 that the pair ({φ;ψ1,ψ2}, {φ̃; ψ̃1, ψ̃2}), associated with the dual filter system
((a;b1,b2), (ã; b̃1, b̃2)), generates a biorthogonal 3-wavelet basis of L2(R). The symmetry patterns of the functions are spec-
ified in (2.14) and (2.15) with c0 = 1, ε1 = 1, c1 = 3, and ε2 = −1, c2 = 3.

Example 2. Let the dilation factor be d = 4 and consider the refinement sequence a of the centered cardinal cubic B-spline
N4(· + 2). Again, by splitting the mask aI

6 in (1.3) with n = 3, we can obtain the desired dual (a, ã) with symbols a(z) and
ã(z) given by

a(z) :=
(

1 + z + z2 + z3

4

)4

z−6, ã(z) :=
(

1 + z + z2 + z3

4

)2

z−3p̃0(z),

where p̃0(z) = 1
8 (63(z−2 + z2)− 282(z−1 + z)+ 446). Note that suppintv(a) = [−6,6], suppintv(ã) = [−5,5], and both filters

a and ã are symmetric about 0: Sa = Sã = 1.
By the same procedure as described in the above example, we obtain a chain of consecutive 4-dual filters a0 → a1 →

a2 → a3 = 1
24 δ with a0 = ã and a1 = a. The symbol a2(z) of a2 is given by a2(z) = 1

12 (−5z−1 + 12 − 5z).
An analogous application of the bottom–up procedure in Algorithm 2 yields the band-pass filters for the pair (a, ã) of 4-

dual filters, such that ((a;b1,b2,b3), (ã; b̃1, b̃2, b̃3)) constitutes a dual filter system with the perfect reconstruction property,
and the symbols b1(z),b2(z),b3(z) and b̃1(z), b̃2(z), b̃3(z) of b1,b2,b3 and b̃1, b̃2, b̃3 are given as follows:

b1(z) = q1(z) + z4q1
(
z−1)

, b2(z) = q2(z) + q2
(
z−1)

, b3(z) = q3(z) − q3
(
z−1)

,

b̃1(z) = q̃1(z) + z4q̃1
(
z−1)

, b̃2(z) = q̃2(z) + q̃2
(
z−1)

, b̃3(z) = q̃3(z) − q̃3
(
z−1)

,

with

q1(z) = 1

4

(
z6 + 4z5 + 10z4 + 20z3 − 35z2)

,

q2(z) = 1

448

(−23z6 − 92z5 − 230z4 − 460z3 + 695z2 + 104 + 6
)
,

q3(z) = 1

512

(
z6 + 4z5 + 10z4 + 20z3 − 55z2 − 16z

)
,

q̃1(z) = 1

64

(
3z5 − 8z4 + 5z3)

,

q̃2(z) = 1

512

(
63z5 − 156z4 + 71z3 + 16z2 + 218z − 212

)
,

q̃3(z) = 1

28

(−63z5 + 156z4 − 71z3 − 16z2 − 64z
)
.

Note that b1 and b̃1 are both symmetric about 2: Sb1(z) = Sb̃1(z) = z4, b2 and b̃2 are both symmetric about 0:
Sb2(z) = Sb̃2(z) = z4, and b3 and b̃3 are both anti-symmetric about 0: Sb3(z) = Sb̃3(z) = −z4. Also, suppintv(b1) = [−2,6],
suppintv(b2) = suppintv(b3) = [−6,6], and suppintv(b̃1) = [−1,5], suppintv(b̃2) = suppintv(b̃3) = [−5,5].
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By calculation, ν2(a,4) = −1/2 − log4(
√

1/65536) = 3.5 and ν2(ã,4) = −1/2 − log4(
√

21.9813 . . .) ≈ −1.6146. The pair
({φ;ψ1,ψ2,ψ3}, {φ̃; ψ̃1, ψ̃2, ψ̃3}) associated with ((a;b1,b2,b3), (ã; b̃1, b̃2, b̃3)) is a pair of biorthogonal d-wavelet bases in
a pair of dual Sobolev spaces (Hτ (R), H−τ (R)) for all 1.6146 < τ < 3.5 (see [21] for detail).

As illustrated by the above two examples, it is easy to obtain pairs (a, ã) of d-dual filters by splitting the interpolatory
mask aI

2n in (1.3). Unfortunately, this simple approach does not, in general, generate sufficiently smoothness exponents of ã
to assure continuity of the corresponding dual scaling functions, and hence, of the associated biorthogonal wavelets. In what
follows, we shall employ the CBC algorithm in [1,13,14] to construct pairs (a, ã) of d-dual filters with larger smoothness
exponents. In order to construct continuous biorthogonal wavelet bases, we need to construct pairs (a, ã) of d-dual filters
such that both ν2(a,d) > 0.5 and ν2(ã,d) > 0.5 (see [15]).

Example 3. Let the dilation factor be d = 3. Using the CBC algorithm, we obtain a pair (a, ã) of 3-dual filters as follows:

a(z) :=
(

1 + z + z2

3

)3

z−3p0(z), ã(z) :=
(

1 + z + z2

3

)2

z−2p̃0(z),

where p0(z) = 1
16 (−7z−1 +15+15z −7z2) and p̃0(z) = 1

1920 (553z−3 −1580z−2 +422z−1 +1565+1565z +422z2 −1580z3 +
533z4)), such that suppintv(a) = [−4,5], suppintv(ã) = [−5,6], and Sa = Sã = z.

By Lemma 2 in Section 4 (or the top–down chain in Algorithm 2), we obtain a chain of consecutive 3-dual filters
a0 → a1 → a2 → a3 → a4 with a0 = ã, a1 = a, where the symbols a2(z), a3(z), and a4(z) of a2, a3, and a4 are given by:

a2(z) = 1

80

(−7z−2 + 6z−1 + 41 + 41z + 6z2 − 7z3)
,

a3(z) = 1

108

(
35z−1 + 30 + 30z + 35z2)

,

a4(z) = 3

5
(1 + z).

The same application of the bottom–up chain in Algorithm 2 yields the band-pass filters corresponding to the low-pass
filter pair (a, ã). That is, we have obtained the 3-dual filter system ((a;b1,b2), (ã; b̃1, b̃2)) with the perfect reconstruction
property. The symbols b1(z),b2(z) and b̃1(z), b̃2(z) of b1,b2 and b̃1, b̃2 are given by

b1(z) = q1(z) − zq1
(
z−1)

, b2(z) = q2(z) + z4q2
(
z−1)

,

b̃1(z) = q̃1(z) − zq̃1
(
z−1)

, b̃2(z) = q̃2(z) + z4q̃2
(
z−1)

,

with

q1(z) = 1

528

(−480z + 115z2 − 162z3 + 54z4 + 63z5)
,

q2(z) = 1

41778

(
11483z2 − 14226z3 + 1266z4 + 1477z5)

,

q̃1(z) = 1

1399680

(−339423z − 149706z2 + 145089z3 + 11869z4 + 5214z5 − 6083z6)
,

q̃2(z) = 1

933120

(
267126z2 − 56126z3 − 227669z4 − 100014z5 + 116683z6)

.

Note that b1 and b̃1 are both anti-symmetric about 1/2: Sb1(z) = Sb̃1(z) = −z, and b2 and b̃2 are both symmetric about 2:
Sb2(z) = Sb̃2(z) = z4. Also, suppintv(b1) = [−4,5], suppintv(b2) = [−1,5], suppintv(b̃1) = [−5,6], and suppintv(b̃2) =
[−2,6].

By calculation, we have ν2(a,3) = −1/2 − log3(
√

0.00294 . . .) ≈ 2.1520 and ν2(ã,3) = −1/2 − log3(
√

0.04000 . . .) ≈
0.9649. By Theorem 3, the pair ({φ;ψ1,ψ2}, {φ̃; ψ̃1, ψ̃2}), associated with the dual filter system ((a;b1,b2), (ã; b̃1, b̃2)), gen-
erates a (continuous) biorthogonal 3-wavelet basis of L2(R). The symmetry patterns of the functions are specified in (2.14)
and (2.15) with c0 = 1, ε1 = −1, c1 = 1, and ε2 = 1, c2 = 4. See Fig. 3.1 for graphs of the pair ({φ;ψ1,ψ2}, {φ̃; ψ̃1, ψ̃2}).

Example 4. Let the dilation factor be d = 4. Using the CBC algorithm, we have a pair (a, ã) of 4-dual filters as follows:

a(z) :=
(

1 + z + z2 + z3

4

)2

z−3p0(z), ã(z) :=
(

1 + z + z2 + z3

4

)2

z−3p̃0(z),

where p0(z) = 1
2 (−z−1 + 4 − z) and p̃0(z) = 1

2 (−z−2 + 4 − z−2), such that suppintv(a) = [−4,4], suppintv(ã) = [−5,5], and
Sa = Sã = 1.
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Fig. 3.1. Graphs of φ , ψ1, ψ2 (top row) and φ̃ , ψ̃1, ψ̃2 (bottom row) in Example 3.

By the same procedure as described in the above examples, we obtain a chain of consecutive 4-dual filters a0 → a1 →
a2 → a3 = 1

3 δ with a0 = ã, a1 = a, and the symbol of a2 being given by a2(z) = 1
16 (z−3 + 2z−2 − z−1 + 12 − z + 2z2 + z3).

The same application of the bottom–up chain in Algorithm 2 yields the band-pass filters corresponding to the low-
pass filter pair (a, ã). That is, we have obtained the 4-dual filter system ((a;b1,b2,b3), (ã; b̃1, b̃2, b̃3)) with the perfect
reconstruction property. The symbols b1(z),b2(z),b3(z) and b̃1(z), b̃2(z), b̃3(z) of b1,b2,b3 and b̃1, b̃2, b̃3 are given by

b1(z) = q1(z) + z4q1
(
z−1)

, b2(z) = q2(z) + z4q2
(
z−1)

, b3(z) = q3(z) − z4q3
(
z−1)

,

b̃1(z) = q̃1(z) + z4q̃1
(
z−1)

, b̃2(z) = q̃2(z) + z4q̃2
(
z−1)

, b̃3(z) = q̃3(z) − z4q̃3
(
z−1)

,

with

q1(z) = 1

768

(−524z2 + 1000z3 − 487z4 + 6z5 + 4z6 + 2z7 − z8)
,

q2(z) = z2 − 2z3 + z4,

q3(z) = 1

4

(−2z3 + z4)
,

q̃1(z) = 1

4

(−6z2 − 3z3 + 6z4 + 3z5)
,

q̃2(z) = 1

32

(−31z2 − 17z3 + 32z4 + 16z5)
,

q̃3(z) = 1

32

(−7z3 + 2z4 + z5)
.

Note that b1 and b̃1 are both symmetric about 2: Sb1(z) = Sb̃1(z) = z4, b2 and b̃2 are both symmetric about 2:
Sb2(z) = Sb̃2(z) = z4, and b3 and b̃3 are both anti-symmetric about 2: Sb3(z) = Sb̃3(z) = −z4. Also, suppintv(b1) = [−4,8],
suppintv(b2) = suppintv(b3) = [0,4], suppintv(b̃1) = suppintv(b̃2) = suppintv(b̃3) = [−1,5].

By calculation, we have ν2(a,4) = −1/2 − log4(
√

9/512) ≈ 0.9575 and ν2(ã,4) = −1/2 − log4
√

9/512 ≈ 0.9575. By The-
orem 3, the pair ({φ;ψ1,ψ2,ψ3}, {φ̃; ψ̃1, ψ̃2, ψ̃3}), associated with the dual filter system ((a;b1,b2,b3), (ã; b̃1, b̃2, b̃3)),
generates a (continuous) biorthogonal 4-wavelet basis in L2(R). The symmetry patterns of the functions are specified
in (2.14) and (2.15) with c0 = 0, ε1 = 1, c1 = 4, ε2 = 1, c2 = 4, and ε3 = −1, c3 = 4. See Fig. 3.2 for graphs of the
pair ({φ;ψ1,ψ2,ψ3}, {φ̃; ψ̃1, ψ̃2, ψ̃3}).

Example 5. Let the dilation factor be d = 4 and a be the refinement mask of the centered cardinal cubic B-spline N4(· + 2).
Using the CBC algorithm, we have a pair (a, ã) of 4-dual filters as follows:

a(z) :=
(

1 + z + z2 + z3

4

)4

z−6, ã(z) :=
(

1 + z + z2 + z3

4

)4

z−6p̃0(z)
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Fig. 3.2. Graphs of φ , ψ1, ψ2, ψ3 (top row) and φ̃ , ψ̃1, ψ̃2, ψ̃3 (bottom row) in Example 4.

where p̃0(z) = 1
16 (56(z−6 + z6) − 337(z−5 + z5) + 680(z−4 + z4) − 346(z−3 + z3) − 336(z−2 + z2) + 93(z−1 + z) + 768). Note

that both filters a and ã are symmetric about 0: Sa = Sã = 1, with suppintv(a) = [−6,6] and suppintv(ã) = [−12,12].
By the same procedure as described in the above examples, we obtain a chain of consecutive 4-dual filters a0 → a1 →

a2 → a3 = 1
24 δ with a0 = ã, a1 = a. The symbol a2(z) of a2 is given by a2(z) = 1

12 (−5z−1 + 12 − 5z).
An analogous application of the bottom–up procedure in Algorithm 2 yields the band-pass filters for the pair (a, ã) of 4-

dual filters, such that ((a;b1,b2,b3), (ã; b̃1, b̃2, b̃3)) constitutes a dual filter system with the perfect reconstruction property,
and the symbols b1(z),b2(z),b3(z) and b̃1(z), b̃2(z), b̃3(z) of b1,b2,b3 and b̃1, b̃2, b̃3 are given as follows:

b1(z) = q1(z) + z4q1
(
z−1)

, b2(z) = q2(z) + z4q2
(
z−1)

, b3(z) = q3(z) − z4q3
(
z−1)

,

b̃1(z) = q̃1(z) + z4q̃1
(
z−1)

, b̃2(z) = q̃2(z) + z4q̃2
(
z−1)

, b̃3(z) = q̃3(z) − z4q̃3
(
z−1)

,

with

q1(z) = 1

1042848

(−1049z10 − 4196z9 − 10490z8 − 20980z7 + 376688z6 − 566284z5

− 314982z4 + 1504356z3 − 963063z2)
,

q2(z) = 1

271044608

(
1759806z14 + 7039224z13 + 17598060z12 + 35196120z11

+ 55637885z10 + 16328348z9 − 29571370z8 − 87299636z7

− 339321518z6 − 116787908z5 − 78940386z4 − 33706356z3 + 552067731z2)
,

q3(z) = 1

271044608

(−68121z14 − 272484z13 − 681210z12 − 1362420z11

− 2139871z10 − 576712z9 + 1283060z8 + 3656056z7 + 136178521z6

− 189826004z5 − 153145242z4 + 349120380z3)
,

q̃1(z) = 1

2168356864

(
1824984z12 − 3682557z11 − 3519612z10 + 4041036z9 + 2205108z8

+ 16712307z7 + 6389928z6 + 14472885z5 − 183909596z4 + 148985129z3 − 3519612z2)
,

q̃2(z) = 1

2085696

(−33768z8 + 68139z7 + 65124z6 − 77295z5 − 227200z4 + 74644z3 + 130356z2)
,

q̃3(z) = 1

64

(
z5 − 4z4 + 5z3)

.

Note that b1 and b̃1 are both symmetric about 2: Sb1(z) = Sb̃1(z) = z4, b2 and b̃2 are both symmetric about 2: Sb2(z) =
Sb̃2(z) = z4, and b3 and b̃3 are both anti-symmetric about 2: Sb3(z) = Sb̃3(z) = −z4. We also have suppintv(b1) = [−6,10],
suppintv(b2) = suppintv(b3) = [−10,14], suppintv(b̃1) = [−8,12], suppintv(b̃2) = [−4,8], suppintv(b̃3) = [−1,5].
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Fig. 3.3. Graphs of φ , ψ1, ψ2, ψ3 (top row) and φ̃ , ψ̃1, ψ̃2, ψ̃3 (bottom row) in Example 5.

By calculation, ν2(a,4) = −1/2 − log4(
√

1/65536) = 3.5 and ν2(ã,4) = −1/2 − log4(
√

0.06172 . . .) ≈ 0.5045. By The-
orem 3, the pair ({φ;ψ1,ψ2,ψ3}, {φ̃; ψ̃1, ψ̃2, ψ̃3}), associated with the dual filter system ((a;b1,b2,b3), (ã; b̃1, b̃2, b̃3)),
generates a (continuous) biorthogonal 4-wavelet basis in L2(R). The symmetry patterns of the functions are specified in
(2.14) and (2.15) with c0 = 9, ε1 = −1, c1 = 9, ε2 = 1, c2 = 5, and ε3 = −1, c3 = 5. See Fig. 3.3 for graphs of the pair
({φ;ψ1,ψ2,ψ3}, {φ̃; ψ̃1, ψ̃2, ψ̃3}).

4. Proofs of main results

In this section we shall prove the main results that have been stated in Section 2.
Two filters u = {u(k)}k∈Z and v = {v(k)}k∈Z are said to be d-orthogonal, if∑

k∈Z
u(k)v(d j + k) = 0, j ∈ Z,

or equivalently, in their polyphase formulation,

d−1∑
γ =0

u[γ ](z)v[γ ](z)� = 0,

where u[γ ](z), v[γ ](z) are the polyphase components of u, v , as defined in (1.6). Observe the analogy between d-
orthogonality and d-duality as in (1.4) or (1.7).

We say that a finite filter u is d-dual reducible if there is a d-dual ũ of u such that suppintv(ũ) � suppintv(u); that is, ũ
has a strictly smaller coefficient support interval than that of u.

The following result shows that any finite filter u with more than one filter tap that has at least one finitely supported
d-dual filter must be d-dual reducible.

Lemma 1. Let (u, ũ) be a pair of d-dual filters with suppintv(u) = [m,n] and n − m � 1. Then there exists a filter ũnew such that
(u, ũnew) is a pair of d-dual filters and either suppintv(ũnew) ⊆ [m + 1,n] or suppintv(ũnew) ⊆ [m,n − 1].

Proof. Let ũ =: {ũ(k)}k∈Z and suppintv(ũ) := [m̃, ñ]. If suppintv(ũ) ⊆ [m + 1,n] or suppintv(ũ) ⊆ [m,n − 1], by defining
ũnew := ũ, we are done. Hence, we shall assume [m̃, ñ] � [m,n − 1] and [m̃, ñ] � [m + 1,n]. In what follows, we shall
construct a desired filter ũnew such that suppintv(ũnew) ⊆ [m + 1,n]. A similar approach applies for the construction of ũnew

such that suppintv(ũnew) ⊆ [m,n − 1].
The idea of our construction is as follows. First observe that if a filter v is d-orthogonal to u, then (u, ũ + v) is also a

pair of d-dual filters. To reduce the support interval of ũ by using a new dual filter ũ + v , we construct a filter v , which is
d-orthogonal to u and has only two nontrivial polyphase components, so that the support interval of ũ + v is shorter than
that of ũ. Then we can apply the same strategy repeatedly to obtain a desired dual filter ũnew .
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Let u(z) be the symbol of u = {u(k)}k∈Z . If we already have m̃ � m + 1, then we set s1 := 0; otherwise, we shall construct
filters v1, . . . , vs1 that are d-orthogonal to u such that min{suppintv(ũ + v1 +· · ·+ vs1 )} � m+1. Recall that min{[t1, t2]} = t1
and max{[t1, t2]} = t2.

We first construct a filter sequence v1 = {v1(k)} with polyphase representation of its symbol v1(z) = ∑d−1
γ =0 zγ v

[γ ]
1 (zd)

such that the polyphase components of v1 are given by

v
[γ ]
1 (z) :=

⎧⎪⎪⎨⎪⎪⎩
ũ(m̃)

u(n)
u[ρm̃](z)� · zλm̃+λn , γ = ρn;

− ũ(m̃)

u(n)
u[ρn](z)� · zλm̃+λn , γ = ρm̃;

0, otherwise.

In view of (1.4), note that ρm �= ρñ and ρm̃ �= ρn. Also, observe that
∑d−1

γ =0 u[γ ](z)v[γ ]
1 (z)� = 0; that is, u and v1 are d-

orthogonal. Moreover, it is easy to see that |suppintv(v1)| � |suppintv(u)|, |suppintv(ũ + v1)| � |suppintv(ũ)| − 1, and
min{suppintv(ũ + v1)} � m̃ + 1.

Repeat this procedure iteratively, if necessary, for j = 1, . . . , s1, with ũ + ∑ j−1
k=1 vk being replaced by ũ + ∑ j

k=1 vk (where∑0
k=1 := 0), m̃ j−1 being replaced by m̃ j , ρm̃ j−1

being replaced by ρm̃ j
, and λm̃ j−1

being replaced by λm̃ j
, where m̃ j :=

min{suppintv(ũ + ∑ j
k=1 vk)}, until

min

{
suppintv

(
ũ +

s1∑
k=1

uk

)}
� min

{
suppintv(u)

} + 1 = m + 1.

If max{suppintv(ũ + ∑s1
k=1 vk)} � n, we are done; otherwise, we next construct filters vs1+1, . . . , vs1+s2 such that

max{suppintv(ũ + ∑s1+s2
k=1 vk)} � n.

Suppose that max{suppintv(ũ + ∑s1
k=1 vk)} =: ñ0 > n. Then, we may apply the same procedure as for the case m̃ � m to

the sequence pair (ũs1 , u), where ũs1 := ũ + ∑s1
k=1 vk = {ũs1 (k)}k∈Z , in order to construct the filter sequence vs1+1 to satisfy

max
{

suppintv(ũs1 + vs1+1)
}

� max
{

suppintv(ũs1)
} − 1. (4.1)

It can be easily shown that (4.1) is satisfied by setting the polyphase components of the symbol of vs1+1 to be

v
[γ ]
s1+1(z) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ũs1 (ñ0)

u(m)
u[ρñ0

]
(z)� · zλñ0

+λm , γ = ρm;
− ũs1 (ñ0)

u(m)
u(ρm)(z)� · zλñ0

+λm , γ = ρñ0
;

0, otherwise.

Repeat this procedure iteratively, if necessary, for j = 1, . . . , s2, with ũs1 +∑ j−1
k=1 vs1+k being replaced by ũs1 +∑ j

k=1 vs1+k ,
ñ j−1 being replaced by ñ j , ρñ j−1

being replaced by ρñ j
, and λñ j−1

being replaced by λñ j
, where ñ j := max{suppintv(ũs1 +∑ j

k=1 vs1+k)}, until

max

{
suppintv

(
ũ +

s2∑
k=1

vs1+k

)}
� max

{
suppintv(u)

} = n.

We may now set ũnew := ũ + ∑s1+s2
k=1 uk . Observe that

s1 + s2 �
∣∣suppintv(ũ)

∣∣ − ∣∣suppintv(u)
∣∣ + 1.

This completes the proof of the lemma. �
We are now ready to prove Theorem 1.

Proof of Theorem 1. By applying Lemma 1 repeatedly, we obtain a chain of filters a0, . . . ,ar with consecutive dual pairs, in
the sense that (a j−1,a j) is d-dual for each j = 1, . . . , r, such that

suppintv(a j+1) � suppintv(a j), j = 1, . . . , r − 1,

where r is determined by the fact that the chain eventually terminates. Since (ar−1,ar) is a dual pair and ar is not d-dual
reducible, ar cannot be the zero sequence and therefore must have a single tap (or equivalently |suppintv(ar)| = 0). �
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We say that a finite filter u that satisfies the symmetry condition Su(z) = εzc for some ε ∈ {−1,1} and some c ∈ Z, is
d-dual reducible with symmetry if there is a d-dual filter ũ of u such that Sũ(z) = Su(z) and suppintv(ũ) � suppintv(u); that
is, ũ has the same symmetry pattern as u, and ũ has a strictly smaller coefficient support interval than that of u.

To illustrate the notion of d-dual reducible with symmetry, let us consider the special case of d = 2 and the primal filter a
with symbol a(z) = z−1(1 + z)3/8. We see that a has a unique 2-dual ã with support [−1,2] and symmetric about 1/2. In
fact the symbol of this (unique) dual filter ã is given by ã(z) = −1/4z−1 + 3/4 + 3/4z − 1/4z2. Since the support interval of
a is not reduced, it is not 2-dual reducible with symmetry. Observe that a has two nontrivial polyphase components.

In the following we will show that for a symmetric or anti-symmetric finite filter u that has more than two nontrivial
polyphase components and has at least one finite d-dual must be d-dual reducible with symmetry. Of course, to consider
more than two nontrivial polyphase components, the dilation factor d must be at least 3.

Lemma 2. Let (u, ũ) be a pair of d-dual filters such that u and ũ have the same symmetry pattern: Su(z) = Sũ(z) = εzc for some
ε ∈ {−1,1} and some c ∈ Z. Suppose suppintv(u) = [m,n] and u has more than two nontrivial polyphase components. Then there
exists a d-dual filter ũnew of u such that Sũnew(z) = εzc and suppintv(ũnew) ⊆ [m + 1,n − 1].

Proof. By applying Lemma 1 to the pair (u, ũ) of d-dual filters, we can construct a dual filter ũ1 = {ũ1(k)}k∈Z (which
might not have any symmetry property), such that suppintv(ũ1) ⊆ [m,n − 1]. If suppintv(ũ1) ⊆ [m + 1,n − 1], then the dual
filter ũnew , defined by ũnew(z) := (ũ1(z) + εzc ũ1(1/z))/2 has the same symmetry pattern as u, and that suppintv(ũnew) ⊆
[m+1,n−1], completing the proof of the lemma. So, we may assume suppintv(ũ1) ⊆ [m,n−1] and min{suppintv(ũ1)} = m,
and construct a dual filter ũ2 of u such that suppintv(ũ2) ⊆ [m + 1,n − 1].

The idea is similar to that in the proof of Lemma 1, except that we need three nontrivial polyphase components of u.
By using three nontrivial polyphase components, we shall construct a filter ṽ = {ṽ(k)}k∈Z that satisfies the following three
conditions:

(i) suppintv(ṽ) ⊆ [m,n − 1],
(ii) ṽ(m) �= 0, and

(iii) ṽ is d-orthogonal to u.

Then the filter ũ2 := ũ1 − ũ(m)

ṽ(m)
ṽ is a d-dual of u with suppintv(ũ2) ⊆ [m + 1,n − 1]. Hence, the above argument again

completes the proof of the lemma.
Observe that we already have two nontrivial polyphase components, u[ρm](z) and u[ρn](z). For the third polyphase com-

ponent, let u[ρ�](z) be any one of the other nontrivial ones. Let m1,n1, �1 be the lowest degrees, and m2,n2, �2 the highest
degrees, of the Laurent polynomials zρm u[ρm](zd), zρn u[ρn](zd), zρ�u[ρ�](zd), respectively. That is, u[ρm](z), u[ρn](z), and u[ρ�](z)
can be written as

u[ρm](z) =
λm2∑

k=λm1

u(dk + ρm)zk;

u[ρn](z) =
λn2∑

k=λn1

u(dk + ρn)zk;

u[ρ�](z) =
λ�2∑

k=λ�1

u(dk + ρ�)zk. (4.2)

Obviously, we have m1 = m, n2 = n, and m1 < �1 � �2 < n2. Here and thereafter, recall that for k ∈ Z, λk := �k/d� and
ρk := k − dλk .

We are now ready to construct the filter ṽ = {ṽ(k)}k∈Z that satisfies the three conditions (i), (ii), and (iii) above, by
setting ṽ = ṽ1 + ṽ2 (for the case �1 < n1), or by setting ṽ = ṽ1 + ṽ2 + ṽ3,0 + · · · + ṽ3,k0 (for the case �1 > n1), where all of
the filters ṽ1, ṽ2, ṽ3,0, . . . , ṽ3,k0 are d-orthogonal to u, and to be constructed in the following discussion. Here k0 = λ�1−n1 .

Let the symbols ṽ1(z) and ṽ2(z) of ṽ1 and ṽ2 be given by

ṽ1(z) :=
d−1∑
γ =0

zγ ṽ
[γ ]
1

(
zd)

, ṽ2(z) :=
d−1∑
γ =0

zγ ṽ
[γ ]
2

(
zd)

,

where the polyphase components are constructed as follows:

ṽ
[γ ]
1 (z) :=

⎧⎪⎨⎪⎩
u[ρn](z)� · zλm1 +λn2 , γ = ρm;
−u[ρm](z)� · zλm1 +λn2 , γ = ρn;
0, otherwise,
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ṽ
[γ ]
2 (z) :=

⎧⎪⎨⎪⎩
C · u[ρ�](z)� · zλ�1 +λn2 , γ = ρn;
−C · u[ρn](z)� · zλ�1 +λn2 , γ = ρ�;
0, otherwise,

(4.3)

with C := (
u(m1)
u(�1)

). It is easy to verify that

suppintv(ṽ1) = [m1,n2] and suppintv(ṽ2) = [
�1,max

{
n2,n2 + (�1 − n1)

}]
.

There are only two cases to be discussed, namely: �1 < n1 and �1 > n1.
Case 1. �1 < n1. In this case, suppintv(ṽ2) = [�1,n2]. Let ṽ := ṽ1 + ṽ2, so that suppintv(ṽ) ⊆ [m,n − 1] and ṽ(m) �= 0.

Also, in view of our construction of ṽ1 and ṽ2 in (4.3), it follows that ṽ is d-orthogonal to u. Hence, ṽ satisfies the above
conditions (i), (ii), and (iii), and the same argument given above completes the proof of the lemma.

Case 2. �1 > n1. In this case, suppintv(ṽ1 + ṽ2) = [m1,n2 + (�1 − n1)] � [m,n − 1]. Let �1 − n1 = dk0 + α with 0 � k0 ∈ N
and α ∈ {0, . . . ,d − 1} (i.e., k0 = λ�1−n1 and α = ρ�1−n1 ). Define a sequence of filters ṽ3,0, . . . , ṽ3,k0 that are d-orthogonal to
u as follows.

Let ṽ3, j(z) := ∑d−1
γ =0 zγ ṽ

[γ ]
3, j (zd), j = 0, . . . ,k0 be the symbol of ṽ3, j . For j = 0, and for each γ = 0, . . . ,d − 1,

ṽ
[γ ]
3,0(z) :=

⎧⎪⎨⎪⎩
C0u[ρ�](z)� · zλm1 +λn2 −λn1 +λ�1 , γ = ρm;
−C0u[ρm](z)� · zλm1 +λn2 −λn1 +λ�1 , γ = ρ�;
0, otherwise,

where C0 := −(
u(n1)
u(�1)

). Let w̃0 := ṽ1 + ṽ2 + ṽ3,0 =: {w̃0(k)}. Then it is easy to see that suppintv(w̃0) ⊆ [m1,n2 + (�1 −n1 −d)].
For j = 1, . . . ,k0, define ṽ3, j through its symbol by

ṽ
[γ ]
3, j (z) :=

⎧⎪⎨⎪⎩
C j z− ju[ρ�](z)� · zλm1 +λn2 −λn1 +λ�1 , γ = ρm;
−C j z− ju[ρm](z)� · zλm1 +λn2 −λn1 +λ�1 , γ = ρ�;
0, otherwise

and w̃ j := ṽ1 + ṽ2 + ṽ3,0 + · · · + ṽ3, j =: {w̃ j(k)} for j = 1, . . . ,k0, where C j, j = 1, . . . ,k0 are some constants determined by
the following recursive formula:

C j := w̃ j−1(n2 + �1 − n1 − d j)

u(m1)
, j = 1, . . . ,k0.

Then ṽ := w̃k0 = ṽ1 + ṽ2 + ṽ3,0 + · · · + ṽ3,k0 again satisfies (i), (ii), and (iii), and the same argument can be applied to
complete the proof of the lemma. �

We are now ready to prove Theorem 2.

Proof of Theorem 2. The proof of Theorem 2 is the same as that of Theorem 1, with the exception that Lemma 2, instead
of Lemma 1, is applied repeatedly. The chain of consecutive d-dual filters with symmetry a0 → a1 → ·· · → a j−1 → a j → ·· ·
terminates at j = r for some r � 2 when either ar has exactly two nontrivial polyphase components or ar has only one
tap. �
5. Final remarks

(1) The filters a0 and a1 that constitute the initial dual pair of the top–down dual-chain in Fig. 1.2 do not have to be
low-pass filters in the construction of filter banks.

(2) For dilation d = 2, the unimodular 2×2 polynomial matrix approach in [3,4] is applied to the pair (a,b), instead of (a, ã)

in this paper, where b denotes the synthesis wavelet filter. Since there are d − 1 synthesis filters b1, . . . ,bd−1 associated
with the low-pass filter a, the approach in [3,4] does not apply to the general integer dilation setting without significant
modification.

(3) For the consideration of the mth order cardinal B-splines with d-refinement sequence a = {a(k)}k∈Z given by (1.1)–(1.2)
(see also Examples 1 and 2 in Section 3), the symbol ã(z) of its dual ã is obtained by applying aI

�(z) in (1.3), which has
an even sum-rule order � := 2n. A recursive formula for computing aI

�(z) for odd � is given in [3, Theorem 2.1], but only
for the special case d = 2. On the other hand, by applying the general CBC algorithm in [1,13,14], one can construct a
desirable (symmetric) dual filter ã with any preassigned order of sum rules for a given primal filter a, without relying
on the interpolatory d-refinement Laurent polynomial symbol (see Examples 3, 4, and 5 in Section 3). In any case, the
algorithms developed in this paper can be applied to derive the associated high-pass or band-pass filter systems. This
provides a complete procedure for the construction of univariate biorthogonal wavelets with an arbitrary dilation factor.
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(4) The dual-chain approach introduced in this paper is not restricted to the univariate setting, in that both Algorithms 1
and 2 can be generalized to construct multivariate filter systems. However, we have not attempted to extend Theo-
rems 1 and 2 to study the existence of dual-chains starting from an arbitrary initial pair of dual multivariate filters. Our
investigation of multivariate filter systems and biorthogonal wavelets will be addressed elsewhere in the future.
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