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Abstract Recently, compressed sensing techniques in com-
bination with both wavelet and directional representation
systems have been very effectively applied to the problem
of image inpainting. However, a mathematical analysis of
these techniques which reveals the underlying geometrical
content is missing. In this paper, we provide the first com-
prehensive analysis in the continuum domain utilizing the
novel concept of clustered sparsity, which besides leading
to asymptotic error bounds also makes the superior behavior
of directional representation systems over wavelets precise.
First, we propose an abstract model for problems of data
recovery and derive error bounds for two different recovery
schemes, namely �1 minimization and thresholding. Second,
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we set up a particular microlocal model for an image gov-
erned by edges inspired by seismic data as well as a partic-
ular mask to model the missing data, namely a linear sin-
gularity masked by a horizontal strip. Applying the abstract
estimate in the case of wavelets and of shearlets we prove
that—provided the size of the missing part is asymptotic to
the size of the analyzing functions—asymptotically precise
inpainting can be obtained for this model. Finally, we show
that shearlets can fill strictly larger gaps than wavelets in this
model.
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recovery · Shearlets · Meyer wavelets

1 Introduction

A common problem in many fields of scientific research is
that of missing data. The human visual system has an amaz-
ing ability to fill in the missing parts of images, but automat-
ing this process is not trivial. Also, depending on the type of
data, the human senses may be unable to fill in the gaps.
Conservators working to repair damaged paintings use the
term inpainting to describe the process. This word now also
means digitally recovering missing data in videos and im-
ages. The removal of overlaid text in images, the repair of
scratched photos and audio recordings, and the recovery of
missing blocks in a streamed video are all examples of in-
painting. Seismic data are also commonly incomplete due
to land development and bodies of water preventing optimal
sensor placement [28, 30]. In seismic processing flow, data
recovery plays an important role.

One very common approach to inpainting is using varia-
tional methods [2–4, 11]. However, recently the novel meth-
odology of compressed sensing, namely exact recovery of
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sparse or sparsified data from highly incomplete linear non-
adaptive measurements by �1 minimization or thresholding,
has been very effectively applied to this problem. The pi-
oneering paper is [21], which uses curvelets as sparsifying
system for inpainting. Various intriguing successive empiri-
cal results have since then been obtained using applied har-
monic analysis in combination with convex optimization [5,
15, 21]. These three papers do contain theoretical analyses
of the convergence of their algorithms to the minimizers of
specific optimization problems but not theoretical analyses
of how well those optimizers actually inpaint. Other theoret-
ical analyses of those types of methods (imposing sparsity
with a discrete dictionary) typically use a discrete model of
the original image which does not allow the geometry of
the problem to be taken into account. In contrast, variational
methods are built on continuous methods and may be an-
alyzed using a continuous model, for example, [10]. Also,
some work has been done to compare variational approaches
with those built on �1 minimization [6, 44]. Finally, in works
such as [28] and [30], intuition behind why directional rep-
resentation systems such as curvelets and shearlets outper-
form wavelets when inpainting images strongly governed by
curvilinear structures such as seismic images is given. So,
although there are many theoretical results concerning in-
painting, they mainly concern algorithmic convergence or
variational methods.

The preliminary results presented in the SPIE Proceed-
ings paper [34] combined with the theory in this paper pro-
vide the first comprehensive analysis of dictionaries with
discrete parameters inpainting the continuum domain utiliz-
ing the novel concept of clustered sparsity, which besides
leading to asymptotic error bounds also makes the superior
behavior of directional representation systems over wavelets
precise. Along the way, our abstract model and analysis lay
a common theoretical foundation for data recovery prob-
lems when utilizing either analysis-side �1 minimization or
thresholding as recovery schemes (Sect. 2). These theoret-
ical results are then used as tools to analyze a specific in-
painting model (Sects. 3–6).

1.1 A Continuum Model

One of the first practitioners of curvelet inpainting for
applications was the seismologist Felix Hermmann, who
achieved superior recovery results for images which con-
sisted of curvilinear singularities in which vertical strips are
missing due to missing sensors. These techniques were soon
also exploited for astronomical imaging, etc., with the com-
mon trait being that the images were governed by curvilinear
singularities. It is evident, that no discrete model can appro-
priately capture such geometrical content.

Thus a continuum domain model seems more appropri-
ate. In fact, in this paper we choose a distributional model

which is a distribution wL acting on Schwartz functions
g ∈ S (R2) by

〈wL , g〉 =
∫ ρ

−ρ

w(x1)g(x1,0)dx1,

the weight w and length 2ρ being specified in the main
body of the paper. Essentially, the weight w sets up the lin-
ear singularity that is smooth in the vertical direction, while
the value of ρ corresponds to the length of the singularity.
Inspired by the seismic imaging situation, we might then
choose the shape of the missing part to be

Mh = 1{|x1|≤h},

i.e., a vertical strip of width 2h. Clearly, h cannot be too
large relative to ρ or else we are erasing too much of wL .
Further, we let PMh

and PR2\Mh
denote the orthogonal pro-

jection of L2(R2) onto the missing part and the known part,
respectively. Our task can now be formulated mathemati-
cally precise in the following way. Given

f = PR2\Mh
wL ,

recover wL .
It should be mentioned that such a microlocal viewpoint

was first introduced and studied in the situation of image
separation [18].

1.2 Sparsifying Systems

It was recently made precise that the optimal sparsifying
systems for such images governed by anisotropic structures
are curvelets [7] and shearlets [38, 42]. Of these two systems
shearlets have the advantage that they provide a unified con-
cept of the continuum and digital domain, which curvelets
do not achieve. However, many inpainting algorithms still
use wavelets, and one might ask whether shearlets provably
outperform wavelets. In fact, we will make the superior be-
havior of shearlets within our model situation precise.

For our analysis, we will use systems of wavelets and
shearlets which are defined below. Both systems are smooth
Parseval frames. Parseval frames generalize orthonormal ba-
ses in a manner which will be useful in the sequel.

Definition 1 A collection of vectors Φ = {ϕi}i∈I in a sepa-
rable Hilbert space H forms a Parseval frame for H if for
all x ∈ H ,
∑
i∈I

∣∣〈x,ϕi〉
∣∣2 = ‖x‖2.

With a slight abuse of notation, given a Parseval frame Φ ,
we also use Φ to denote the synthesis operator

Φ : �2(I ) → H , Φ
({ci}i∈I

) =
∑
i∈I

ciϕi .
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With this notation, Φ∗ is called the analysis operator.

1.2.1 Wavelets

Meyer wavelets are some of the earliest known exam-
ples of orthonormal wavelets; they also have high regular-
ity [14, 43]. We modify the classic system to get a decom-
position of the Fourier domain that is comparable to the
shearlet system that we will use. For the construction, let
ν ∈ C∞(R) satisfy ν(·) + ν(1 − ·) = 1R(·), where the indi-
cator function 1A is defined to take the value 1 on A and 0
on Ac , and

ν(x) =
{

0: x ≤ 0,

1: x ≥ 1.

Then the Fourier transform of the 1D Meyer wavelet gener-
ator is defined by

W(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

e−16πiξ/3 sin[π
2 ν(16|ξ | − 1)]: 1

16 ≤ |ξ | ≤ 1
8 ,

e−8πiξ/3 cos[π
2 ν(8|ξ | − 1)]: 1

8 ≤ |ξ | ≤ 1
4 ,

0: else,

and the Fourier transform of the scaled 1D Meyer scaling
function is

φ̂(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

1: |ξ | ≤ 1
16 ,

cos[π
2 ν(16|ξ | − 1)]: 1

16 ≤ |ξ | ≤ 1
8 ,

0: else,

where we use the following Fourier transform definition for
f ∈ L1(Rn)

Ff := f̂ =
∫

Rn

f (x)e−2πi〈x,·〉dx,

(where 〈·, ·〉 is the standard Euclidean inner product) which
can be naturally extended to functions in L2(Rn). The in-
verse Fourier transform is given by

F−1f := f̌ =
∫

Rn

f (ξ)e2πi〈·,ξ〉dξ.

We will not detail the interpretation of a scaling function but
refer the interested reader to [14, 43]. Then we define the
C∞ ∩ L2(R2)-functions Wv , Wh, and Wd by

Wv(ξ) = φ̂(ξ1)W(ξ2),

Wh(ξ) = W(ξ1)φ̂(ξ2), and

Wd(ξ) = W(ξ1)W(ξ2).

We denote

ψ̂λ(ξ) = 2−jW ι
(
ξ/2j

)
e−2πi〈k,ξ/2j 〉, λ = (ι, j, k).

Then the Parseval Meyer wavelet system is given by

{
ψλ : λ = (ι, j, k), ι ∈ {h,v, d}, j ∈ Z, k ∈ Z2}.

We have not yet shown that this system forms a Parseval
frame. It is known (in various forms, for example [12–14,
32, 33]) that if for {ψι}ι for ψι ∈ L2(Rn)

∑
ι

∑
k �=0

∑
j∈Z

∣∣ψ̂ ι
(
2j ξ

)
ψ̂ ι

(
2j ξ − k

)∣∣ = 0 a.e. ξ ∈ Rn

and
∑

ι

∑
j∈Z

∣∣ψ̂ ι
(
2j ξ

)∣∣2 = 1 a.e. ξ ∈ Rn,

then

{
2jn/2ψι

(
2j · −k

) : j ∈ Z, k ∈ Zn, ι
}

is a Parseval frame for L2(Rn). The Meyer wavelet system
defined above easily satisfies this.

1.2.2 Shearlets

We will use the construction of Guo and Labate of smooth
Parseval frames of shearlets [27] which is a modification
of cone-adapted shearlets (see, for example [38]). Let the
parabolic scaling matrices Ah

a and Av
a and shearing matrices

Sh
s and Sv

s be defined as

Ah
a =

[
a2 0
0 a

]
, Av

a =
[
a 0
0 a2

]
,

Sh
s =

[
1 s

0 1

]
, and Sv

s =
[

1 0
s 1

]
.

We use these dilation matrices as these are used in [27] and
given particulars of their construction, it is not straightfor-
ward to adopt their methods to the dilation matrix

[ a 0
0

√
a

]
.

In addition, given the fact that the matrices defined above
always have integer values when a is an integer, they are
reasonable from the point of view of implementation. Let
V ∈ L2(R) ∩ C∞(R) satisfy suppV ⊆ [−1,1], and

1∑
k=−1

∣∣V (ξ + k)
∣∣2 = 1, ξ ∈ [−1,1].

Further set V h(ξ) = V (ξ2/ξ1) and V v(ξ) = V (ξ1/ξ2). For
ξ = (ξ1, ξ2) ∈ R2, define

φ̂(ξ) = φ̂(ξ1)φ̂(ξ2)

and

W (ξ) =
√

|φ̂(
2−2ξ

)|2 − |φ̂(ξ)|2.
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We define the following shearlet system for L2(R2) by

{φk : k ∈ Z2}
∪ {

σ ι
j,�,k, : j ≥ 0, |�| < 2j , k ∈ Z2, ι ∈ {h,v}}

∪ {
σj,�,k : j ≥ 0, � = ±2j , k ∈ Z2}, (1)

where

φk = φ(· − k);
for ι ∈ {h,v},
σ̂ ι

j,�,k(ξ)

= 2−3j/2W
(
2−2j ξ

)
V ι

(
ξAι

2−j S
ι
−�

)
e

2πi〈ξAι

2−j Sι−�,k〉;
for j = 0 and � = ±1,

σ̂0,�,k(ξ) =
⎧⎨
⎩

W (ξ)V (
ξ2
ξ1

− �)e2πi〈ξ,k〉: | ξ2
ξ1

| ≤ 1,

W (ξ)V (
ξ1
ξ2

− �)e2πi〈ξ,k〉: | ξ2
ξ1

| > 1;

and for j ≥ 1, � = ±2j ,

σ̂j,�,k(ξ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2− 3
2 j− 1

2 W (2−2j ξ)V (2j ξ2
ξ1

− �)e
πi〈ξAh

2−j Sh−�,k〉:
| ξ2
ξ1

| ≤ 1,

2− 3
2 j− 1

2 W (2−2j ξ)V (2j ξ1
ξ2

− �)e
πi〈ξAh

2−j Sh−�,k〉:
| ξ2
ξ1

| > 1.

The σj,k� are the “seam” elements that piece together the
σ ι

j,�,k and φk . We now have the following result from [27,
Theorem 5].

Theorem 1 The system defined in (1) is a Parseval frame
for L2(R2). Furthermore, the elements of this system are
C∞ and band-limited.

We will sometimes employ the notation

σ̂η = σ̂ ι
j,�,k, η = (ι, j, �, k),

where ι ∈ {h,v,∅}, j ∈ Z, k ∈ Z2, and � ∈ Z.
Fix a j ≥ 0. Then the support of each σ̂ ι

j,�,k and σ̂j,�,k

lies in the Cartesian corona

Cj = [−22j−1,22j−1]2\[−22j−4,22j−4]2
. (2)

The position of the support inside the corona is determined
by the values of � and ι, with the “seam” elements σ̂j,�,k hav-
ing support in the corners. Thus, the shearlet system induces
the frequency tiling in Fig. 2 (cf. Fig. 1 for the frequency
tiling of Meyer wavelets).

Fig. 1 Frequency tiling of
Meyer wavelets

Fig. 2 Frequency tiling of the
shearlet system

1.3 Recovery Algorithms

We next decide upon a recovery strategy. Compressed sens-
ing offers a variety of such, the most common ones being
�1 minimization and thresholding. We will also use these.
However, for preparation purposes to derive an asymptotic
scale dependent analysis—the fact that the energy of our
model lies mainly in arbitrary high frequencies requires this
approach—, we first perform a band-pass filtering on wL
(see (8)). The band-pass filters will be roughly speaking cho-
sen according to the bands given by the wavelets and shear-
lets, see Figs. 1 and 2, leading to the sequence

(fj )j = (PR2\Mh
wLj )j .

The �1 minimization problem we choose has the form

Lj = argminL ‖Φ∗L‖1 subject to fj = PR2\Mh
L, (3)

where Φ is a Parseval frame. We emphasize that this ap-
proach to inpainting minimizes the analysis coefficients
and is hence related to the newly introduced cosparsity
model [45, 46]. The choice will be explained further in
Sect. 2.2.

The thresholding strategy we choose is brutally simple.
We only perform one step of hard thresholding, namely, set-
ting Tj = {i : |〈fj ,φi〉| ≥ βj } for some threshold βj , the
reconstructed image is

Lj = Φ1Tj
Φ∗wLj . (4)

For the asymptotic analysis, the βj are explicitly computed
in the proofs of Lemmas 8 and 13. In practice, as is usual
with parameters in algorithms, one must be careful when
selecting the βj .
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It will be surprising that the geometry of wavelets and
shearlets is strong enough to achieve the same asymptotic
recovery results as for �1 minimization for the respective
systems. However, thresholding techniques can be viewed
as approximations of �1 minimization and many parallel
results have been found for �1 minimization and thresh-
olding. For example, �1 minimization [18] and threshold-
ing [36] applied to the geometric separation problem both
achieve asymptotic separation. In fact, thresholding can be
used to separate wavefront sets [36]. Iterative thresholding
algorithms have successfully approximated solutions to such
diverse sparsity problems as multidimensional NMR spec-
troscopy [19] and finding row-sparse solutions to underde-
termined linear systems [23].

1.4 Microlocal Analysis

One might ask where the geometry we mentioned before
will come into play. This can best be explained and illus-
trated using microlocal analysis in phase space. For a more
detailed explanation of the fundamentals of microlocal anal-
ysis, see [31], and for an application of microlocal analysis
to derive a fundamental understanding of sparsity-based al-
gorithms using shearlets and curvelets, see [8, 24, 37]. Phase
space in this context is indexed by position-orientation pairs
(b, θ). The orientation component θ is an element of real
projective space, which for simplicity’s sake we shall iden-
tify in what follows with [0,π). The wavefront set WF(f )

of a distribution f is roughly the set of elements in the phase
space at which f is nonsmooth coupled with the direction of
the singularity. Thus the wavefront set describes the singu-
lar behavior of the distribution. First consider a curvilinear
singularity C along a closed curve τ : [0,1] → R2:

C =
∫

δτ(t)(·)dt,

where δx is the usual Dirac delta distribution located at x.
As illustrated in Fig. 3, the wavefront set of C is

WF(C ) = {(
τ(t), θ(t)

) : t ∈ [0,1]},
where θ(t) is the normal direction of C at τ(t). Now con-
sider the model from Sect. 1.1,

f = PR2\Mh
wL .

As can be seen in Fig. 4 the wavefront set of f almost looks
like f itself except that the wavefront set fills all possible
angles (i.e., forms a spike) at the end points of the miss-
ing mask. This is because at the end points, the distribu-
tion is singular in all but the parallel direction. Note that the
wavefront set of the linear singularity does not have spikes
at the end due to the smooth weight. The difference be-
tween the approximate phase space portrait of shearlets and

Fig. 3 Wavefront set of a curvilinear singularity C

Fig. 4 Wavefront set of a masked linear singularity MhwL

Fig. 5 Left: Effective supports of wavelets (disks) and shearlets (el-
lipses). Right: Phase space portrait of the same wavelets (spikes) and
shearlets (ellipses)

wavelets is demonstrated in Fig. 5. The intuition behind the
image comes from the fact that shearlets resolve the wave-
front set [24, 37]. Even though our shearlets and wavelets
are smooth and thus do not have a wavefront set, by doing a
continuous shearlet transform (f �→ 〈f,a3/2σ(S�Aa ·−k)〉),
one can get an approximation of phase space information
which takes into account orientation, this is shown in Fig. 5.

Furthermore, in Fig. 6 (Left) the small overlap of the
wavefront set of a cluster of shearlets with a spike in the
phase space, which represents an end point of the mask of
missing information Mh, can be clearly seen. Thus shear-
let clusters are incoherent with the end points, meaning that
the clusters do not overlap the spikes strongly in the phase
space. However, there is a lot of phase space overlap with
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Fig. 6 Left: Phase space portrait of a cluster of shearlets and one single
wavelet. Right: Phase space portrait of shearlets tiling a gap

the wavefront set away from the endpoints. So it is easy to
see how easily a cluster of shearlets can span a gap of miss-
ing data (Fig. 6 (Right)). Herrmann and Hennenfent call this
property the “principle of alignment” which explains why
curvelets “attain high compression on synthetic data as well
as on real seismic data” [30]. The phase space information
of curvelets and shearlets are essentially the same [25].

1.5 Asymptotical Analysis

The width of the area to be inpainted plays a key role, even
when using other inpainting techniques. In [9], variational
inpainting methods are analyzed theoretically, showing that
the local thickness of the area to be inpainted affects the
success of the inpainting more than the overall size of the
area to be inpainted.

Thus our analysis shall also take this into account. We
accomplish this by also making the gap size h dependent on
the scale j . This leads to the problem of recovering wLj

from knowledge of

fj = PR2\Mhj
wLj ,

for each scale j . Letting Lj denote the recovered image by
either one of the proposed algorithms, we will show that
asymptotically precise inpainting, i.e.,

‖Lj − wLj‖2

‖wLj‖2
→ 0, j → ∞,

is achieved for wavelets provided that hj = o(2−2j ) (The-
orems 2 and 3) as j → ∞ and for shearlets provided that
hj = o(2−j ) (Theorems 5 and 6) as j → ∞. In fact, this is
exactly what one would imagine. Inpainting succeeds pro-
vided that the gap size is strictly smaller than the size of
the analyzing elements. The scale-dependent gap size al-
lows us to analyze dependency on the size of the shearlets
and wavelets in a clear way, providing a theoretical under-
standing of how inpainting algorithms work even though in
practice the gap size is fixed.

1.6 Wavelets Versus Shearlets

This observation seems to indicate that shearlets indeed per-
form better than wavelets. However, the previously men-
tioned theorems just state positive results. In order to show
that shearlets outperform wavelets in the model situation
which we consider, we require a negative result of the fol-
lowing type: If hj = ω(2−j ) as j → ∞ and Lj is recovered
by wavelets, then

‖Lj − wLj‖2

‖wLj‖2
�→ 0, j → ∞.

And in fact, this is what we will prove in Theorem 8. In
this sense, we now have a mathematically precise statement
showing that shearlets are strictly better for inpainting in our
model.

The only slight disappointment is the fact that this state-
ment will only be proven for thresholding as the recovery
scheme. We strongly suspect that this result also holds for
�1 minimization. However, we are not aware of any anal-
ysis tools strong enough to derive these results also in this
situation.

1.7 Our Approach

Our analysis has been focused primarily on revealing the
fundamental mathematical concepts which lead to success-
ful image inpainting using wavelets or shearlets. The view-
point we take, however, is that the main results are very
amenable to generalizations and extensions. For example,
our asymptotic analysis is based on a vertical mask of miss-
ing data from a horizontal wavefront. Other masks applied
to curved wavefronts could be considered. The microlocal
bending techniques employed in [18] seem to suggest that
this approach will yield desirable results.

1.8 Contents

We begin in Sect. 2 with an abstract analysis of data re-
covery via �1 minimization introducing clustered sparsity
and concentration in a Hilbert space as tools. We then ap-
ply the results in Sect. 2 to a particular class of inpainting
problems which are described in Sect. 3. In Sects. 4 and 5,
we prove that both wavelets and shearlets, respectively, are
able to inpaint a missing band but that shearlets can handle
wider gaps. It is shown in Sect. 6 that the inpainting result
for wavelets in Sect. 4 is tight; i.e., shearlets strictly outper-
form wavelets in the considered model situation. We discuss
future directions of research and limitations of the current
model in Sect. 7. Finally, the Appendix contains auxiliary
results concerning shearlets needed for Sect. 5.
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2 Abstract Analysis of Data Recovery

We start by analyzing missing data recovery via �1 mini-
mization and thresholding in an abstract model situation.
The error estimates we will derive can be applied in a variety
of situations. In this paper,—as discussed before—we aim to
utilize them to analyze inpainting via wavelets and shearlets
following a continuum domain model. In fact, these error es-
timates will later on be applied to each scale while deriving
an asymptotic analysis.

2.1 Abstract Model

Let x0 ∈ H be a signal in a Hilbert space H . To model the
data recovery problem correctly, we assume that H can be
decomposed into a direct sum

H = HM ⊕ HK

of a subspace HM which is associated with the missing part
of x0 and a subspace HK which relates to the known part
of the signal. Further, let PM and PK denote the orthogonal
projections onto those subspaces, respectively. The problem
of data recovery can then be formulated as follows: Assum-
ing that PKx0 is known to us, recover x0.

Following the philosophy of compressed sensing, sup-
pose that there exists a Parseval frame Φ which—in a way
yet to be made precise—sparsifies the original signal x0.
Either Φ can be selected non-adaptively such as choosing
a wavelet or shearlet system which will be our avenue in
the sequel, or Φ can be chosen adaptively using dictionary
learning algorithms such as [1, 22, 47].

To already draw the connection to the special situation
of inpainting at this point, assume that H = L2(R2). If the
measurable subset B ⊆ R2 is the missing area of the image,
we set HK = L2(R2 \ B) and HM = L2(B).

2.2 Inpainting via �1 Minimization

A methodology from compressed sensing to achieve recov-
ery is �1 minimization, which recovers the original signal by
solving

(INP) x� = argminx ‖Φ∗x‖1 subject to PKx = PKx0.

We wish to remark that in this problem, the norm is placed
on the analysis coefficients rather than on the synthesis coef-
ficients as in [16, 20] and other papers on basis pursuit. Since
we intend to also apply this optimization problem in the sit-
uation when Φ does not form a basis but merely a frame, the
analysis and synthesis approaches are different. One reason
to use the analysis approach is to avoid numerical instabili-
ties. For each x ∈ H , the linear system of equations x = Φc

has infinitely many solutions c, but with the analysis ap-

proach, only c = Φ∗x is considered. Also, since we are only
interested in correctly inpainting and not in computing the
sparsest expansion, we can circumvent possible problems by
solving the inpainting problem by selecting a particular co-
efficient sequence which expands out to the x, namely the
analysis sequence. A similar strategy was pursued in [34]
and [36]. Various inpainting algorithms which are based on
the core idea of (INP) combined with geometric separation
are heuristically shown to be successful in [5, 15, 21].

Interestingly, this minimization problem can be also re-
garded as a mixed �1-�2 problem [35], since the analysis
coefficient sequence Φ∗x is exactly the minimizer of

min
{‖c‖2 : c ∈ �2, x = Φc

}
,

that is, the coefficient sequence which is minimal in the
�2 norm. The optimization problem in (INP) may also be
thought of as a relaxation of the cosparsity problem

x� = argminx ‖Φ∗x‖0 subject to PKx = PKx0.

Theoretical results concerning cosparsity may be found
in [45, 46].

We also consider the noisy case. Assume now that we
know x̃ = PKx0 + n, where x0 and n are unknown, but n is
assumed to be small in the sense of ‖Φ∗n‖1 ≤ ε for small ε.
Also, clearly n = PKn. Then we solve

(INPNOISE) x̃� = argminx ‖Φ∗x‖1

subject to PKx = x̃.

To analyze this optimization problem, we require the fol-
lowing notion, which intuitively measures the maximal frac-
tion of the total �1 norm which can be concentrated to the
index set Λ restricted to functions in HM . In this sense, the
geometric relation between the missing part HM and expan-
sions in Φ is encoded.

Definition 2 Let Φ be a Parseval frame, and let Λ be an
index set of coefficients. We then define the concentration
on HM by

κ = κ(Λ,HM) = sup
f ∈HM

‖1ΛΦ∗f ‖1

‖Φ∗f ‖1
.

This notion allows us to formulate our first estimate con-
cerning the �2 error of the reconstruction via (INP). The
reader should notice that the considered error ‖x� − x0‖2 is
solely measured on HM , the masked space, since PKx� =
PKx0 due to the constraint in (INP). Another important no-
tion is that of clustered sparsity.

Definition 3 Fix δ > 0. Given a Hilbert space H with a
Parseval frame Φ , x ∈ H is δ-clustered sparse in Φ (with
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respect to Λ) if

‖1ΛcΦ∗x‖1 ≤ δ,

where given a space X and a subset A ⊆ X, Ac denotes
X\A.

We now present a pair of lemmas which were first pub-
lished in [34] without proof.

Lemma 1 Fix δ > 0 and suppose that x0 is δ-clustered
sparse in Φ . Let x� solve (INP). Then

‖x� − x0‖2 ≤ 2δ

1 − 2κ
.

The noiseless case Lemma 1 holds as a corollary to the
case with noise, which follows.

Lemma 2 Fix δ > 0 and suppose that x0 is δ-clustered
sparse in Φ . Let x̃� solve (INPNOISE). Also assume that the
noise satisfies ‖Φ∗n‖1 ≤ ε. Then

‖x̃� − x0‖2 ≤ 2δ + (3 + 2κ)ε

1 − 2κ
.

Proof Since Φ is Parseval,
∥∥x̃� − x0

∥∥
2 ≤ ∥∥Φ∗(x̃� − x0)∥∥

1. (5)

We invoke the relation PKx̃� = PKx0 + n, which implies
that PK(x̃� − x0) = n. Using the definition of κ , we obtain
∥∥1ΛΦ∗(x̃� − x0)∥∥

1

≤ ∥∥1ΛΦ∗PM

(
x̃� − x0)∥∥

1 + ‖1ΛΦ∗n‖1

≤ κ
∥∥Φ∗PM

(
x̃� − x0)∥∥

1 + ‖Φ∗n‖1

≤ κ
∥∥Φ∗(x̃� − x0)‖1 + (1 + κ)

∥∥Φ∗n‖1

≤ κ
∥∥Φ∗(x̃� − x0)∥∥

1 + (1 + κ)ε. (6)

It follows that

‖Φ∗(x̃� − x0)‖1

= ∥∥1ΛΦ∗(x̃� − x0)∥∥
1 + ∥∥1ΛcΦ∗(x̃� − x0)∥∥

1

≤ κ
∥∥Φ∗(x̃� − x0)∥∥

1 + ∥∥1ΛcΦ∗(x̃� − x0)∥∥
1 + (1 + κ)ε.

The clustered sparsity of x0 now implies
∥∥Φ∗(x̃� − x0)∥∥

1

≤ 1

1 − κ

(∥∥1ΛcΦ∗(x̃� − x0)∥∥
1 + (1 + κ)ε

)

≤ 1

1 − κ

(‖1ΛcΦ∗x̃�‖1 + δ + (1 + κ)ε
)
. (7)

Applying the sparsity of x0 again and the minimality of x̃�,
we have

‖1ΛcΦ∗x̃�‖1

= ‖Φ∗x̃�‖1 − ‖1ΛΦ∗x̃�‖1

≤ ∥∥Φ∗(x0 + n
)∥∥

1 − ‖1ΛΦ∗x̃�‖1

≤ ‖Φ∗x0‖1 − ‖1ΛΦ∗x̃�‖1 + ε

≤ ‖Φ∗x0‖1 + ∥∥1ΛΦ∗(x̃� − x0)∥∥
1 − ‖1ΛΦ∗x0‖1 + ε

≤ ∥∥1ΛΦ∗(x̃� − x0)∥∥
1 + δ + ε.

Using (6) and (7), this leads to

∥∥Φ∗(x̃� − x0)∥∥
1

≤ 1

1 − κ

(‖1ΛcΦ∗x̃�‖1 + δ + (1 + κ)ε
)

≤ 1

1 − κ

(∥∥1ΛΦ∗(x̃� − x0)∥∥
1 + 2δ

) + (2 + κ)ε

1 − κ

≤ 1

1 − κ

(
κ
∥∥Φ∗(x̃� − x0)∥∥

1 + 2δ
) + (3 + 2κ)ε

1 − κ
.

Combining this with (5), we finally obtain

‖x̃� − x0‖2 ≤
(

1 − κ

1 − κ

)−1 2δ + (3 + 2κ)ε

1 − κ

= 2δ + (3 + 2κ)ε

1 − 2κ �

We now establish a relation between the concentration
κ(Λ,HM) on HM and the notion of cluster coherence μc

first introduced in [18]. For this, by abusing notation, we
will write PMΦ = {PMϕi}i and PKΦ = {PKϕi}i for the
projected frame elements.

To first introduce the notion of cluster coherence, recall
that in many studies of �1 optimization, one utilizes the mu-
tual coherence

μ(Φ1,Φ2) = max
j

max
i

∣∣〈ϕ1i , ϕ2j 〉
∣∣,

whose importance was shown by [17]. This may be called
the singleton coherence. We modify the definition to take
into account clustering of the coefficients arising from the
geometry of the situation.

Definition 4 Let Φ1 = {ϕ1i}i∈I and Φ2 = {ϕ2j }j∈J lie in a
Hilbert space H and let Λ ⊆ I . Then the cluster coherence
μc(Λ,Φ1;Φ2) of Φ1 and Φ2 with respect to Λ is defined
by

μc(Λ,Φ1;Φ2) = max
j∈J

∑
i∈Λ

∣∣〈ϕ1i , ϕ2j 〉
∣∣.
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The following relation is a specific case of Proposi-
tion 3.1 in [34]. We include a proof for completeness.

Lemma 3 We have

κ(Λ,HM) ≤ μc(Λ,PMΦ;PMΦ) = μc(Λ,PMΦ;Φ).

Proof For each f ∈ HM , we choose a coefficient sequence
α such that f = Φα and ‖α‖1 ≤ ‖β‖1 for all β satisfying
f = Φβ . Invoking the fact that Φ is a tight frame, hence
f = ΦΦ∗Φα, and the fact that f = (PMΦ)α, we obtain

‖1ΛΦ∗f ‖1 = ∥∥1Λ(PMΦ)∗f
∥∥

1

= ∥∥1Λ(PMΦ)∗(PMΦ)α
∥∥

1

≤
∑
i∈Λ

(∑
j

|〈PMφi,PMφj 〉||αj |
)

=
∑
j

(∑
i∈Λ

|〈PMφi,PMφj 〉|
)

|αj |

≤ μc(Λ,PMΦ;PMΦ)‖α‖1

≤ μc(Λ,PMΦ;PMΦ)‖Φ∗Φα‖1

= μc(Λ,PMΦ;PMΦ)‖Φ∗f ‖1. �

Combining Lemmata 1 and 3 proves the final noiseless
estimate and combining Lemmata 2 and 3 proves the final
estimate with noise:

Proposition 1 Fix δ > 0 and suppose that x0 is δ-clustered
sparse in Φ . Let x� solve (INP). Then

‖x� − x0‖2 ≤ 2δ

1 − 2μc(Λ,PMΦ;Φ)
.

Proposition 2 Fix δ > 0 and suppose that x0 is δ-clustered
sparse in Φ . Let x̃� solve (INPNOISE). Also assume that the
noise satisfies ‖Φ∗n‖1 ≤ ε. Then

‖x̃� − x0‖2 ≤ 2δ + (3 + 2κ)ε

1 − 2μc(Λ,PMΦ;Φ)
.

Let us briefly interpret this estimate, first focusing on the
noiseless case. As expected the error decreases linearly with
the clustered sparsity. It should also be emphasized that both
clustered sparsity and cluster coherence depend on the cho-
sen “geometric set of indices” Λ. Thus this set is crucial for
determining whether Φ is a good dictionary for inpainting.
This will be illustrated in the sequel when considering a par-
ticular situation; however, Λ is merely an analysis tool and
explicit knowledge of it is not necessary to recover the orig-
inal image. Note that in general, the larger the set Λ is, the
smaller ‖1ΛcΦ∗x0‖1 is (i.e., x0 is δ-clustered sparse for a

smaller δ) and the larger the cluster coherence is. However,
note that if Φ sparsifies x0 well, then a small set Λ can be
chosen which keeps ‖1ΛcΦ∗x0‖1 small. Finally, consider-
ing the noisy case, as also expected the error estimate de-
pends linearly on the �2 bound for the noise.

2.3 Inpainting via Thresholding

Another fundamental methodology from compressed sens-
ing for sparse recovery is thresholding. The beauty of this
approach lies in its simplicity and its associated fast algo-
rithms. Typically, it is also possible to prove the success of
recovery in similar situations as in which �1 minimization
succeeds.

Various thresholding strategies are available such as it-
erative thresholding, etc. It is thus surprising that the most
simple imaginable strategy, which is to perform just one step
of hard thresholding, already allows for error estimates as
strong of for �1 minimization. We start by presenting this
thresholding strategy. For technical reasons, we now assume
that the Parseval frame Φ = (φi)i consists of frame vectors
with equal norm, i.e., ‖φi‖ = c for all i.

The following result provides us with an estimate for the
�2 error of the synthesized signal x� computed via ONE-
STEP-THRESHOLDING.

Proposition 3 Let T and x� be computed via the algo-
rithm ONE-STEP-THRESHOLDING (Fig. 7) for noiseless
data, and for δ > 0 assume that x0 is δ-clustered sparse in
Φ with respect to T . Then

‖x� − x0‖2 ≤ c
[
δ + ‖1T Φ∗PMx0‖1

]
.

As before, Proposition 3 follows as a corollary to the case
with noise:

Proposition 4 Let T and x� be computed via the algorithm
ONE-STEP-THRESHOLDING for data with noise, and for
δ > 0 assume that x0 is δ-clustered sparse in Φ with respect
to T . Also assume that the noise satisfies ‖Φ∗n‖1 ≤ ε. Then

‖x� − x0‖2 ≤ c
(‖1T Φ∗PMx0‖1 + δ + ε

)
.

Proof Invoking the decomposition of H and the fact that
Φ is Parseval,

‖x� − x0‖2

= ∥∥Φ1T Φ∗(PKx0 + n
) − ΦΦ∗PKx0 − PMx0

∥∥
2

= ‖Φ1T cΦ∗PKx0 + Φ1T Φ∗n − PMx0‖2.

Since

PMx0 = Φ1T Φ∗PMx0 + Φ1T cΦ∗PMx0
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ONE-STEP-THRESHOLDING

Parameters:

– Incomplete signal x̃ = PKx0 (noiseless) or
PKx0 + n (with noise).

– Thresholding parameter β .

Algorithm:

1) Threshold Coefficients with Respect to Frame Φ:

a) Compute 〈x̃, φi〉 for all i.

b) Apply threshold and set T = {i : |〈x̃, φi〉| ≥ β}.
2) Reconstruct Original Signal:

a) Compute x� = Φ1T Φ∗x̃.

Output:

– Significant thresholding coefficients: T .

– Approximation to x0: x�.

Fig. 7 ONE-STEP-THRESHOLDING Algorithm to reconstruct x0 from
noiseless PKx0 or noisy PKx0 + n

and PKx0 + PMx0 = x0, it follows that

‖x� − x0‖2

≤ ‖Φ1T cΦ∗x0‖2 + ‖Φ1T Φ∗PMx0‖2

+ ‖Φ1T Φ∗n‖2.

It follows from the equal-norm condition on the frame Φ

that for any �1 sequence x,

‖Φx‖2 ≤ c‖x‖1.

Applying the clustered sparsity of x0 we obtain

‖x� − x0‖2 ≤ c
(‖1T Φ∗PMx0‖1 + δ + ε

)
,

which is what we intended to prove. �

As before, let us also interpret this estimate. Now the sit-
uation is slightly different from the estimate for the �1 ap-
proach. Again, the estimate depends linearly on the clustered
sparsity and the noise. The difference now is the appearance
of the term ‖1T Φ∗PMx0‖1 in the numerator instead of the
cluster coherence in the denominator. Note, however, that

‖1T Φ∗PMx0‖1 ≤ κ‖Φ∗PMx0‖1

≤ μc(T ,PMΦ;Φ)‖Φ∗PMx0‖1.

Thus both in the �1 minimization case Proposition 1 and in
the thresholding case Proposition 3, the bound on the error

Fig. 8 Synthetic seismic data with randomly distributed missing
traces—Hennenfent and Hermmann [29]

is lower when the cluster coherence is lower. Furthermore,
‖Φ∗PMx0‖1 is a quantification of how much of the signal is
missing, which clearly can not be too high.

3 Mathematical Model

We next provide a specific mathematical model which is
motivated by the fact that images are typically governed
by edges, which can prominently be seen in, for example,
seismic imaging (Fig. 8). Following this line of thought, our
model is based on line singularities—which can as explained
later be extended to curvilinear singularities—with missing
data of the forms as gaps or holes. In this section, such a
model for the original image and the mask will be intro-
duced. Since the analysis we derive later is based on the be-
havior in Fourier domain, the Fourier content of the models
is another focus.

3.1 Image Model

Inspired by seismic data with missing traces, an example of
which is found in Fig. 8, we define our mathematical model.
The data can be viewed as a collection of curvilinear sin-
gularities which are missing nearly vertical strips of infor-
mation. We first simplify the model by considering linear
singularities. As shearlets are directional systems, we then
simplify the model so that the linear singularity is horizon-
tal. The specific mathematical model that we shall analyze
is as follows. Let w : R �→ [0,1] be a smooth function that is
supported in [−ρ,ρ], where we always assume that ρ is suf-
ficiently large, in particular, much larger than h (a measure
of the missing data which will be defined in the next sub-
section). For now, we consider as a prototype of a line sin-
gularity the weighted distribution wL acting on tempered
distributions S ′(R2) by

〈wL , f 〉 =
∫ ρ

−ρ

w(x1)f (x1,0)dx1.
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Notice that this distribution is supported on the segment

[−ρ,ρ] × {0}
of the x-axis, hence can be employed as a model for a hor-
izontal linear singularity. The weighting was chosen to en-
sure that we are dealing with an L2-function after filtering.
The Fourier transform of wL can be computed to be

〈ŵL , f 〉 = 〈wL , f̂ 〉 =
∫

R
ŵ(ξ1)

∫
R

f (ξ1, ξ2)dξ2dξ1.

Let now F̌j be a filter corresponding to the frequency
corona Cj at level j (see (2)) defined by its Fourier trans-
form Fj ,

Fj =
∑

ι∈{h,v,d}

(
Wι

(
2−2j ξ

) + Wι
(
2−2j−1ξ

))
.

To simplify the proofs for wavelets, we also define

F̃j =
∑

ι∈{h,v,d}
Wι

(
2−j ξ

)
,

so that Fj = F̃2j +F̃2j+1. We use two bands for the wavelets
so that the wavelet and shearlet systems will be compared on
the same frequency corona. This makes sense as the base
(j = 1) dilation for the 2D wavelets has determinant 4,
while the base dilation for the shearlets has determinant 8.
We consider the filtered version of wL which we denote by
wLj , i.e.,

wLj = wL � F̌j =
∫

R2
wL (· − t)F̌j (t)dt. (8)

The next result provides us with an estimate of the norm
of wLj .

Lemma 4 For some c > 0,

‖wLj‖2 ≥ c2j , j → ∞.

Proof We have

‖wLj‖2

≥
(∫

ξ1∈R

∣∣ŵ(ξ1)
∣∣2

dξ1

∫
|ξ2|∈[22j−4c0,22j−1c0]

dξ2

)1/2

≈ c2j . �

3.2 Masks

Inspired by the missing sensor scenario in seismic data we
will define the mask of a missing piece of the image as fol-
lows. The mask Mh is a vertical strip of diameter 2h and is
given by

Mh = 1{|x1|≤h}.

Fig. 9 Mask Mh (gray shaded region), together with the linear singu-
larity wL (horizontal line with dashed center indicating part masked
out)

For an illustration, we refer to Fig. 9.
For the convenience of the reader, we compute the asso-

ciated Fourier transforms, where as usual we set sinc(y) =
sin(πy)/(πy) for y ∈ R.

Lemma 5 We have

M̂h = 2h sinc(2hξ1)L̂y,

where Ly is the distribution acting as

〈Ly, f 〉 =
∫

f (0, y)dy

and 〈L̂y, f 〉 = ∫
f (x,0)dx.

Proof Define the planar Heaviside by H(x) = 1{x1≥0}.
Since Ly = ∂

∂x1
H , we have Ĥ (ξ) = (2πiξ1)

−1L̂y . We now
express Mh in terms of H by

Mh = H
(
x + (h,0)

) − H
(
x − (h,0)

)
.

This leads to

M̂h = (
e2πihξ1 − e−2πihξ1

)
(2πiξ1)

−1L̂y

= 2 sin(2πhξ1)/(2πξ1)L̂y = 2h sinc(2hξ1)L̂y.

The proof is finished. �

3.3 Transfer of Abstract Setting

All of the main proofs in Sects. 4 and 5 will follow a particu-
lar pattern. Either Proposition 1 (in the case of �1 minimiza-
tion) or Proposition 3 (in the case of thresholding) is applied
to the situation in which x0 is chosen to be the filtered lin-
ear singularity wLj , the Hilbert space HM is defined by
{f Mh : f ∈ L2(R2)}, and Φ is either the Parseval system of
Meyer wavelets or of shearlets at scale j .



216 J Math Imaging Vis (2014) 48:205–234

In the analysis that follows, δj will denote the optimal δ-
clustered sparsity for the filtered coefficients. That is, for �1

minimization with a fixed filter level j , we will fix a set Λj

of significant coefficients of Φ = {ψλ}λ and set

δj =
∑
λ∈Λc

j

∣∣〈wLj ,ψλ〉
∣∣.

Similarly, we will analyze thresholding schemes by setting

δj =
∑

λ∈T c
j

∣∣〈wLj ,ψλ〉
∣∣,

where the Tj are the significant coefficients computed by
the ONE-STEP-THRESHOLDING Algorithm. The inpainting
accomplished (i.e., the solution in Proposition 1 or Proposi-
tion 3) on the filtered levels j will be denoted by Lj . wLj

will denote the filtered real image; that is, wL � F̌j , where
wL is the original, complete image. The main theorems in
Sects. 4 and 5 will show that

‖Lj − wLj‖2

‖wLj‖2
→ 0, j → ∞.

The results will specifically depend on the asymptotic be-
havior of the gap hj . For the proofs involving the Meyer
system, the following notation will also be useful

w̃L j = wL � F̃∨
j .

4 Positive Results for Wavelet Inpainting

We begin by proving theoretically for the first time what has
been known heuristically; namely, that wavelets can suc-
cessfully inpaint an edge as long as not too much is miss-
ing. In Sect. 4.1, we investigate the inpainting results of
�1 minimization by estimating the δ-clustered sparsity δj

and cluster coherence μc with respect to Φ = {ψλ : λ =
(ι, j, k), ι = h,v, d; k ∈ Z2} and a properly chosen index set
Λj . In Sect. 4.2, we similarly give the estimation of δj and
μc for inpainting using thresholding.

4.1 �1 Minimization

In what follows, we use the compact notation 〈a〉 := (1 +
|a|2)1/2. We first need to choose the set of significant coef-
ficients appropriately. We do this by setting

Λ̃j = {
(ι; j, k) : |k1| ≤ ρnj 2j , |k2| ≤ nj , ι = h,v, d

}
,

where nj = 2εj . This choice of Λj = Λ̃2j ∪ Λ̃2j+1 forces
the clustered sparsity to grow slower than the growth rate of
‖wLj‖2:

Lemma 6 δj = o(1) = o(‖wLj‖2), j → ∞.

Proof By definition, we have

δj =
∑
λ∈Λc

j

∣∣〈wLj ,ψλ〉
∣∣

≤
∑
λ∈Λc

j

(∣∣〈w̃L 2j ,ψλ〉
∣∣ + ∣∣〈w̃L 2j+1,ψλ〉

∣∣

≤
∑

λ∈Λ̃c
2j

(∣∣〈w̃L 2j ,ψλ〉
∣∣ +

∑
λ∈Λ̃c

2j+1

∣∣〈w̃L 2j+1,ψλ〉
∣∣

=: δ̃2j + δ̃2j+1.

We now compute

δ̃j =
∑
λ∈Λ̃c

j

∣∣〈w̃L j ,ψλ〉
∣∣ =

∑
λ∈Λ̃c

j

∣∣〈 ̂w̃L j , ψ̂λ〉
∣∣;

that is,

δ̃j =
∑
λ∈Λ̃c

j

∣∣∣∣
∫

R2
2−j ŵ(ξ1)F̃j (ξ)Wι

(
ξ/2j

)
e−2πi〈k,ξ/2j 〉dξ

∣∣∣∣

:=
∑
λ∈Λ̃c

j

∣∣∣∣
∫

R2
Ĝj (ξ)e−2πi〈k,ξ/2j 〉dξ

∣∣∣∣,

where Ĝj (ξ) = 2−j ŵ(ξ1)F̃j (ξ)Wι(ξ/2j ) is a smooth and
compactly supported function that is essentially supported
on

[−1/ρ,1/ρ] × [−2j c0,2j c0
]
.

Applying the change of variable (ξ1, ξ2) �→ (ρ−1ξ1,2j ξ2)

ensures that Ĝj (ρ
−1ξ1,2j ξ2) is smooth and compactly sup-

ported independent of j . Then
∣∣∣∣
∫

R2
Ĝj (ξ)e−2πi〈k,ξ/2j 〉dξ

∣∣∣∣
≤ c̃N‖Ĝj‖∞

(
ρ−12j

)〈∣∣(ρ−1k1/2j , k2
)∣∣〉−N

≤ cN

(
ρ−12j

)〈∣∣(ρ−1k1/2j , k2
)∣∣〉−N

.

Consequently, δ̃j /cN is bounded above by

ρ−12j
∑
λ∈Λc

j

〈∣∣(ρ−1k1/2j , k2
)∣∣〉−N

≤ ρ−12j

( ∑
|k1|≥ρnj 2j ,k2

〈∣∣∣∣
(

ρ−1k1

2j
, k2

)∣∣∣∣
〉−N

+
∑

|k1|≤ρnj 2j ,|k2|≥nj

〈∣∣∣∣
(

ρ−1k1

2j
, k2

)∣∣∣∣
〉−N)
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≤ ρ−12j

(∫ ∞

ρnj 2j

∫
R

〈∣∣∣∣
(

ρ−1x1

2j
, x2

)∣∣∣∣
〉−N

dx2dx1

+
∫ ρnj 2j

0

∫ ∞

nj

〈∣∣∣∣
(

ρ−1x1

2j
, x2

)∣∣∣∣
〉−N

dx2dx1

)

≤
∫ ∞

nj

∫
R

〈∣∣(x1, x2)
∣∣〉−N

dx2dx1

+
∫ nj

0

∫ ∞

nj

〈∣∣(x1, x2)
∣∣〉−N

dx2dx1

≤ 2jε(1−N).

Thus,

δj ≤ c22jε(1−N) + 2(2j+1)ε(1−N)

and for N large enough, δj → 0 as j → ∞. �

On the other hand, the choice of Λj offers low cluster
coherence as well:

Lemma 7 For hj = o(2−2j ) as j → ∞, we have

μc

(
Λj , {Mhj

ψλ}; {ψλ}
) → 0, j → ∞.

Proof We again first consider Λ̃j . By definition, we have

μc

(
Λ̃j , {Mhj

ψλ}; {ψλ}
) = max

λ′

∑
λ∈Λ̃j

∣∣〈Mhj
ψλ,ψλ′ 〉∣∣

= max
λ′

∑
λ∈Λ̃j

∣∣〈M̂hj
� ψ̂λ, ψ̂λ′ 〉∣∣.

Note that for λ = (ι, j, k), we can choose λ′ = (ι′, j,0).

〈M̂hj
� ψ̂λ, ψ̂λ′ 〉

=
∫

R2

∫
R2

M̂hj
(ξ)ψ̂λ(τ − ξ)dξψ̂λ′(τ )dτ

=
∫

R2

∫
R

2hj sinc(2hj ξ1)ψ̂λ

(
τ − (ξ1,0)

)
dξ1ψ̂λ′(τ )dτ

=
∫

R
2hj sinc(2hj ξ1)

[∫
R2

2−2jW ι

(
τ − (ξ1,0)

2j

)

× e
−2πi〈k,

τ−(ξ1,0)

2j 〉
Wι′

(
τ

2j

)
dτ

]
dξ1

= 2j 2hj

∫
R2

[∫
R

sinc
(
2j 2hj ξ1

)
Wι

((
τ − (ξ1,0)

))

× e2πik1ξ1dξ1W
ι′(τ )

]
e−2πi〈k,τ 〉dτ

=: 2j 2hj

∫
R2

ĝj (τ )e−2πi〈k,τ 〉dτ,

where

ĝj (τ ) := Wι′(τ )

∫
R

sinc
(
2j 2hj ξ1

)
Wι

((
τ − (ξ1,0)

))

× e2πi〈k1,ξ1〉dξ1 (9)

is a smooth function supported on a box independent of j .
Hence, | ∫ ĝj (τ )e−2πikτ dτ | ≤ cN‖ĝj‖∞〈|k|〉−N , and

‖ĝj‖∞ ≤ c sup
τ

∫ ∣∣sinc
(
2j 2hj ξ1

)∣∣∣∣Wι
(
τ − (ξ1,0)

)∣∣dξ1

≤ c
∥∥sinc

(
2j 2hj ·

)∥∥
2 ≤ c

(
2jh

)−1/2
.

Consequently, we have

μc

(
Λ̃j , {Mhj

ψλ}; {ψλ}
)

≤ cN 2jhj

(
2j hj

)−1/2 ∑
k∈Z2

〈|k|〉−N

≤ cN

(
2jhj

)1/2
,

where

μc

(
Λj , {Mhj

ψλ}; {ψλ}
)

= μc

(
Λ̃2j , {Mhj

ψλ}; {ψλ}
)

+ μc

(
Λ̃2j+1, {Mhj

ψλ}; {ψλ}
)

which goes to 0 as j → ∞ by assumption. �

We would like to remark at this point that we do not need
the strong condition that hj = o(2−2j ) as j → ∞. In fact,
carefully handling the constants in the proof of Lemma 7
will lead us to the condition

μc

(
Λj , {Mhj

ψλ}; {ψλ}
) ≤ cN

(
22j hj

)

with precise knowledge of the value of cN . Since ultimately,
we “only” need the cluster coherence to boundedly stay a-
way from 1/2, we only require the weaker condition of

22j hj ≤ 1

2cN

− ε for some ε > 0 and for all j ≥ j0.

This condition would then be also sufficient for deriving the
following theorem.

We now apply Proposition 1 to Lemmata 4, 6, and 7 to
obtain the desired convergence for the normalized �2 error
of the reconstruction Lj derived from (3), where in this case
L = wLj and Φ are wavelets ψλ at scale j .

Theorem 2 For hj = o(2−2j ) and Lj the solution to (3)
with Φ the 2D Meyer Parseval system,

‖Lj − wLj‖2

‖wLj‖2
→ 0, j → ∞.
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This result shows that if the size of the gap shrinks faster
than 2−2j —i.e., the size of the gap is asymptotically smaller
than 2−2j —or if the gap shrinks at the same rate than 2−2j

with an exactly prescribed factor, we have asymptotically
perfect inpainting.

4.2 Thresholding

We will now study thresholding as an inpainting method,
which is from a computational point of view much easier
to apply than �1 minimization. Our analysis will show that
we can derive the same asymptotic performance as for �1

minimization.
Our first claim concerns the set of the thresholding coef-

ficients Tj (constructed as in Fig. 7).

Lemma 8 For hj = o(2−2j ) as j → ∞, there exist thresh-
olds {βj }j such that, for all j ≥ j0,

{
k : |k1| ≤ ρ22j (1+n1), |k2| ≤ 22jn1

} ⊆ Tj

for positive j0 and n1.

Proof We again first analyze w̃L j . By Plancherel, we can
rewrite the coefficients which we have to threshold as fol-
lows:
∣∣〈(1 − Mhj

)w̃L j ,ψλ

〉∣∣
= ∣∣〈δ0 � ̂̃wL j , ψ̂λ〉 − 〈M̂hj

� ̂̃wL j , ψ̂λ〉
∣∣.

Choose a function F such that F(·/2j ) = F̃j . Then,

̂w̃L j (ξ) = ŵL (ξ)F̃j (ξ) = ŵL (ξ)F
(
ξ/2j

)
.

As we are analyzing a horizontal line singularity, we only
need to consider

ψ̂λ = 2−jWv
(
ξ/2j

)
e−2πi〈k,ξ/2j 〉

for large wavelet coefficients. Then, the first term equals

〈δ0 � ŵL j , ψ̂λ〉

= 2−j

∫
ŵ(ξ1)

∫ (
FWv

)(
ξ/2j

)
e−2πi〈k/2j ,ξ〉dξ

=
∫ [∫

ŵ(ξ1)
(
FWv

)((
ξ1/2j , ξ2

))
e−2πi〈k1/2j ,ξ1〉dξ1

]

× e−2πi〈k2,ξ2〉dξ2.

By using Lemma 5, we derive for the second term:

〈M̂hj
� ŵL j , ψ̂λ〉

= 2hj

∫
sinc(2hj τ1)

×
∫

ŵ(ξ1)(ψ̂λFj )
(
(τ1,0) + (ξ1, ξ2)

)
dξdτ1

= 2hj 2−j

∫
sinc(2hj τ1)

∫
ŵ(ξ1)F

(
ξ1/2j , ξ2/2j

)

× Wv
(
(τ1 + ξ1)/2j , ξ2/2j

)
e−2πi〈k/2j ,τ1+ξ1,ξ2〉dξdτ1

= 2hj

∫ [∫
ŵ(ξ1)

∫
sinc

(
(hj /π)τ1

)
F

(
ξ1/2j , ξ2

)

× Wv
((

(τ1 + ξ1)/2j , ξ2
))

e−2πi〈k1,(τ1+ξ1)/2j 〉dτ1dξ1

]

× e−2πi〈k2,ξ2〉dξ2.

Let Ĝ now be the function

Ĝ(ξ2) =
∫

ŵ(ξ1)

[(
FWv

)((
ξ1/2j , ξ2

))

− 2hj

∫
sinc

(
(hj /π)τ1

)
F

(
ξ1/2j , ξ2

)

× Wv
(
(τ1 + ξ1)/2j , ξ2

)
e−2πi(k1/2j )τ1dτ1

]

× e−2πi(k1/2j )ξ1dξ1

=
∫

ŵ(ξ1)Ĥξ2(ξ1)e
−2πi(k1/2j )ξ1dξ1

with

Ĥξ2(ξ1) = (
FWv

)((
ξ1/2j , ξ2

))

− 2hj

∫
sinc

(
(hj /π)τ1

)
F

(
ξ1/2j , ξ2

)

× Wv
(
(τ1 + ξ1)/2j , ξ2

)
e−2πi〈(k1/2j ),τ1〉dτ1.

The function Ĝ is supported on the set [1/2,2], which is
independent of j . By standard arguments, we can deduce
that

∣∣〈(1 − Mhj
)w̃L j ,ψλ

〉∣∣ ≤ cN1‖Ĝ‖∞
〈|k2|

〉−N1 . (10)

Let us now investigate the term ‖Ĝ‖∞ further. Using Plan-
cherel and the support properties of w,

∣∣∣∣
∫

ŵ(ξ1)Ĥξ2(ξ1)e
−2πi〈k1/2j ,ξ1〉dξ1

∣∣∣∣
= ∣∣(ŵĤξ2)

∨(−k1/2j
)∣∣ = ∣∣(w � Hξ2)

(−k1/2j
)∣∣

=
∣∣∣∣
∫

w
(−k1/2j − x

)
Hξ2(x)dx

∣∣∣∣

≈ c

∣∣∣∣
∫ −k1/2j +ρ

−k1/2j −ρ

Hξ2(x)dx

∣∣∣∣.
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For the analysis of the function Hξ2 , we use well-known
properties of the Fourier transform to derive

Hξ2(x) = ((
FWv

)(·/2j , ξ2
))∨

(x)

− ((
2hj sinc(2hj ·)e−2πi(k1/2j )·)

�
((

FWv
)(·/2j , ξ2

)))∨
(−x)

= ((
FWv

)(·/2j , ξ2
))∨

(x)

− (
2hj sinc

(
(2hj ·)

)
e−2πi(k1/2j )·)∨

(−x)

× ((
FWv

)(·/2j , ξ2
))∨

(−x)

= ((
FWv

)(·/2j , ξ2
))∨

(x)

− 1[−hj ,hj ]
(
x − k1/2j

)

× ((
FWv

)(·/2j , ξ2
))∨

(−x).

Hence, since hj < ρ,

c

∣∣∣∣
∫ −k1/2j +ρ

−k1/2j −ρ

Hξ2(x)dx

∣∣∣∣

= c

∣∣∣∣
∫ k1/2j +ρ

k1/2j −ρ

((
FWv

)(·/2j , ξ2
))∨

(x)

−
∫ k1/2j +hj

k1/2j −hj

((
FWv

)(·/2j , ξ2
))∨

(x)dx

∣∣∣∣ (11)

= c

∣∣∣∣
∫ k1−2j hj

k1−2j ρ

+
∫ k1+2j ρ

k1+2j hj

((
FWv

)(∣∣(·, ξ2)
∣∣))∨

(x)dx

∣∣∣∣.
(12)

Notice that the bounds of integration indeed make sense,
since the values of k1 which lie “in between hj and ρ”
should play an essential role. Due to the regularity of W ,
there exist some N2 and c (possibly differing from the one
before, but we do not need to distinguish constants here)
such that
∣∣((FWv

)(∣∣(·, ξ2)
∣∣))∨

(x)
∣∣ ≤ c〈|x|〉−N2 ,

and hence by (12),

‖Ĝ‖∞ ≤ c
〈
min

{|k1 − 2j ρ|, |k1 + 2j ρ|}〉−N2 . (13)

Finally, we have to study how the function Ĥ relates to
h, which will show the behavior of the coefficients as they
approach the center of the mask. For this, setting

Ĵξ2(τ1) = (
FWv

)(
(τ1 + ξ1)/2j , ξ2

)
e−2πi〈k1/2j ,τ1〉,

we obtain∣∣∣∣
(
FWv

)(
ξ1/2j , ξ2

)

− 2hj

∫
sinc

(
(hj /π)τ1

)(
FWv

)(
(τ1 + ξ1)/2j , ξ2

)

× e−2πi〈k1/2j ,τ1〉dτ1

∣∣∣∣
=

∣∣∣∣Ĵξ2(0) − 2hj

∫
sinc

(
(hj /π)τ1

)
Ĵξ2(τ1)dτ1

∣∣∣∣
=

∣∣∣∣Ĵξ2(0) −
∫

1̂[−hj ,hj ](τ1)Ĵξ2(τ1)dτ1

∣∣∣∣

=
∣∣∣∣Ĵξ2(0) −

∫ hj

−hj

Jξ2(x)dx

∣∣∣∣

=
∣∣∣∣
∫

|x|>hj

Jξ2(x)dx

∣∣∣∣.

Hence another way to estimate ‖Ĝ‖∞ is by

‖Ĝ‖∞
c

≤ ‖Ĥξ2‖∞

≤ max
ξ1,ξ2

∣∣∣∣
∫

|x|>hj

((
FWv

)(
(· + ξ1)/2j , ξ2

))∨

× (
x − k1/2j

)
dx

∣∣∣∣
≤ max

ξ2

∣∣∣∣
∫

|x|>2j hj

((
FWv

)(
(·, ξ2)

))∨
(x − k1)dx

∣∣∣∣.

Certainly, the minimum is attained in the center of the mask,
i.e., with k = 0. So combining this with (10) and (13),
∣∣〈(1 − Mhj

)w̃L j ,ψλ

〉∣∣

≤ c max
ξ2

∣∣∣∣
∫

|x|>2j hj

((
FWv

)(
(·, ξ2)

))∨
(x)dx

∣∣∣∣
× 〈|k2|

〉−N1
〈
min

{|k1 − 2j ρ|, |k1 + 2j ρ|}〉−N2

which is what we intend to use as a “model.” Observe that
this indeed is also intuitively the right estimate, since the
k2 component has to decay rapidly away from zero, thereby
sensing the singularity in zero in this direction. In contrast,
the k1 component stays greater or equal to 〈2j ρ〉−N2 up to
the point 2ρ2j and then decays rapidly in accordance with
the fact that up to the point k1 = ρ2j we are “on” the line
singularity which decays smoothly with ŵ. Moreover, the
first term models the behavior in the mask, which is also
nicely supported by the fact that the crucial product 22j hj is
appearing therein.

We now apply the triangle inequality
∣∣〈(1 − Mhj

)wLj ,ψλ

〉∣∣
≤ ∣∣〈(1 − Mhj

)w̃L 2j ,ψλ

〉∣∣
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+ ∣∣〈(1 − Mhj
)w̃L 2j+1,ψλ

〉∣∣.
Since 22j hj → 0 and 22j+1hj → 0 as j → ∞, we have

as j → ∞

max
ξ2

∣∣∣∣
∫

|x|>22j hj

((
FWv

)(
(·, ξ2)

))∨
(x)dx

∣∣∣∣ → C.

We now set the thresholds βj to be

c(C − ε)

〈|22jε |〉N1〈min{|(22jε − 1)22j ρ|, |(22jε + 1)22j ρ|}〉N2
.

This choice immediately proves the claim of the lemma. �

Note that given the choice of βj in the proof Λj ⊆
{k : |k1| ≤ ρ22j (1+n1), |k2| ≤ 22jn1} ⊆ Tj for some n1 > 0.
For such Tj , we have the following lemma.

Lemma 9 δj = ∑
k∈T c

j
|〈wLj ,ψλ〉| = o(‖wLj‖2),

j → ∞.

Proof We observe from the proof of Lemma 6 that the de-
sired property is automatically satisfied provided that, for all
j ≥ j0, the set Tj satisfies

Tj ⊇ {
k : |k1| ≤ ρ22j (1+ν1), |k2| ≤ 22jν1

} ⊇ Λj,

for some ν1 > 0, which is implied by Lemma 8. �

We next analyze the second term in the estimate from
Proposition 3.

Lemma 10 For hj = o(2−2j ) as j → ∞,

∑
k∈Tj

∣∣〈Mhj
wLj ,ψλ〉

∣∣ = o(2j/2), j → ∞.

Proof We first need to derive some estimates dependent on
k for the term |〈Mhj

w̃L j ,ψλ〉|. By using the definitions of
Mhj

and w̃L j and a change of variables, we first obtain

〈Mhj
w̃L j ,ψλ〉

= 2hj

∫ [∫
ŵ(ξ1)

∫
sinc

(
(2hj )τ1

)
F

(
ξ1/2j , ξ2

)

× Wv
((

(τ1 + ξ1)/2j , ξ2
))

e−2πi〈k1,(τ1+ξ1)/2j 〉dτ1dξ1

]

× e−2πi〈k2,ξ2〉dξ2.

Here F(·/2j ) = F̃ . Let Ĝ now be the function

Ĝ(ξ2) =
∫

ŵ(ξ1)2hj

∫
sinc

(
(hj /π)τ1

)
F

(
ξ1/2j , ξ2

)

× Wv
(
(τ1 + ξ1)/2j , ξ2

)
e−2πi〈k1/2j ,τ1+ξ1〉dτ1dξ1

=
∫

ŵ(ξ1)Ĥξ2(ξ1)e
−2πi〈k1/2j ,ξ1〉dξ1,

with

Ĥξ2(ξ1) = 2hj

∫
sinc

(
(hj /π)τ1

)
F

(
ξ1/2j , ξ2

)

× Wv
(
(τ1 + ξ1)/2j , ξ2

)
e−2πi〈k1/2j ,τ1〉dτ1.

The function Ĝ is supported on the set [−1/4,−1/16] ∪
[1/16,1/4], which is independent of j . Hence, we have

∣∣〈Mhj
wLj ,ψλ〉

∣∣ ≤ cN1‖Ĝ‖∞
〈|k2|

〉−N1 . (14)

By Plancherel’s theorem and the support properties of w,

∣∣∣∣
∫

ŵ(ξ1)Ĥξ2(ξ1)e
−2πi〈k1/2j ,ξ1〉dξ1

∣∣∣∣
= ∣∣(ŵĤξ2)

∨(−k1/2j
)∣∣

= ∣∣(w � Hξ2)
(−k1/2j

)∣∣
=

∣∣∣∣
∫

w
(−k1/2j − x

)
Hξ2(x)dx

∣∣∣∣

≈ c

∣∣∣∣
∫ −k1/2j +ρ

−k1/2j −ρ

Hξ2(x)dx

∣∣∣∣.

Next, using well-known properties of the Fourier transform,
we can manipulate Hξ2(x):

= ((
2hj sinc(2hj ·)e−2πik1/2j ·) �

(
FWv

(·/2j , ξ2
)))∨

(−x)

= (
2hj sinc(2hj ·)e−2πik1/2j ·)∨

(−x)

× ((
FWv

)(·/2j , ξ2
))∨

(−x)

= 1[−hj ,hj ]
(−x − k1/2j

)((
FWv

)(·/2j , ξ2
))∨

(−x).

Hence, since hj < ρ,

c

∣∣∣∣
∫ −k1/2j +ρ

−k1/2j −ρ

Hξ2(x)dx

∣∣∣∣

= c

∣∣∣∣
∫ k1/2j +hj

k1/2j −hj

((
FWv

)(·/2j , ξ2
))∨

(x)dx

∣∣∣∣

= c

∣∣∣∣
∫ k1+2j hj

k1−2j hj

((
FWv

)(
(·, ξ2)

))∨
(x)dx

∣∣∣∣.

Notice that this indeed makes sense, since due to the mask-
ing the length of the line singularity isn’t allowed to play
a role here. Due to the regularity of W , there exists some
constants N2 and c such that

∣∣(FWv
)(∣∣(·, ·)∣∣)∨

(x)
∣∣ ≤ c

〈|x|〉−N2 .
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Hence,

‖Ĝ‖∞ ≤ c
〈
min

{|k1 − 2jhj |, |k1 + 2jhj |
}〉−N2 .

Combining this estimate with (14), we obtain
∣∣〈Mhj

w̃L j ,ψλ〉
∣∣

≤ c
〈|k2|

〉−N1
〈
min

{|k1 − 2j hj |, |k1 + 2jhj |
}〉−N2,

which is what we intend to use.
Finally,

∑
k∈Tj

∣∣〈Mhj
wLj ,ψλ〉

∣∣

≤ c

( ∑
k∈Tj

〈|k2|
〉−N1

〈
min

{|k1 − 22j hj |, |k1 + 22j hj |
}〉−N2

+
∑
k∈Tj

〈|k2|
〉−N1

〈
min

{|k1 − 22j+1hj |,

|k1 + 22j+1hj |
}〉−N2

)

≤ c. �

Notice that this result holds for any Tj , which again is
intuitively clear since if it holds for the claimed on, then
extending the set Tj does not change the estimate due to the
fact that Mhj

wLj is zero “outside.”
We now apply Proposition 3 to Lemmata 4, 9, and 10 to

obtain the desired convergence for the normalized �2 error
of the reconstruction Lj from ONE-STEP-THRESHOLDING

in Fig. 7. Again, in this case x = wLj and Φ are wavelets
ψλ at scale j .

Theorem 3 For hj = o(2−2j ) and Lj the solution to (4)
with Φ the 2D Meyer Parseval system,

‖Lj − wLj‖2

‖wLj‖2
→ 0, j → ∞.

This result shows that ONE-STEP-THRESHOLDING fills
in gaps of the same size as �1 minimization (INP) in an
asymptotic sense when considering the �2 error.

5 Shearlet Inpainting Positive Results

In this section, Φ is the shearlet frame as in (1) in Sect. 1.2.2.
The general approach in this section is the same as in the
preceding section. We show that the use of the analysis co-
efficients of the shearlet system through either �1 minimiza-
tion or thresholding will successfully inpaint a line across
a missing strip. Namely, in Sect. 5.1, we investigate the

inpainting results of �1 minimization by estimating the δ-
clustered sparsity δj and cluster coherence μc with respect
to {ση : η = (ι, j, �, k), ι ∈ {h,v,∅}; |�| ≤ 2j ; k ∈ Z2} and
a properly chosen index set Λj . In Sect. 5.2, we similarly
give the estimation of δj and μc for inpainting using thresh-
olding. Some of the proofs in this section are very simi-
lar in spirit to the corresponding ones in Sect. 4 but decid-
edly more technical due to the structural difference between
wavelets and shearlets. The auxiliary functions (9) and (15)
in the proofs of Lemma 7 and Theorem 4 demonstrate this
relationship quite well.

5.1 �1 Minimization

For our analysis we choose the set of significant shearlet
coefficients to be

Λj = {
(ι; j, k, �) : |k1| ≤ ρnj 2j , |k2| ≤ nj , � = 0; ι = v

}

where we revive the notion nj = 2ε2j from the previous sub-
section.

Now we can show that the shearlet coefficients corre-
sponding to the �j have asymptotic clustered sparsity.

Lemma 11 For ε < 1/4,

δj = o
(
2j

)
, j → ∞.

Proof By the definition, we have

δj =
∑

|k1|≥ρnj 2j ,|k2|≤nj ,�=0

∣∣〈wLj , σ
v
j,�,k

〉∣∣

+
∑

|k2|≥nj ,�=0

∣∣〈wLj , σ
v
j,�,k

〉∣∣ +
∑

k∈Z2,� �=0

∣∣〈wLj , σ
v
j,�,k

〉∣∣

+
∑

k∈Z2,�

∣∣〈wLj , σ
h
j,�,k

〉∣∣ +
∑
k∈Z2

∣∣〈wLj , σj,±2j ,k〉
∣∣

=: T1 + T2 + T3 + T4 + T5.

To estimate T1, we first estimate 〈wL , ση〉 for the case � = 0
and ι = v. By Lemma 18 in the Appendix,
〈
wL , σ v

j,k,0

〉

≤ cNa
−1/2
j

〈|k2|
〉−1〈[

k2
2 + a−4

j min± (aj k1 ± ρ)2]1/2〉2−N

≤ cNa
−1/2
j 〈|k2|〉−1〈[k2

2 + min±
(
a−1
j k1 ± a−2

j ρ
)2]1/2〉2−N

≤ cNa
−1/2
j

〈|k2|
〉−1〈

a−2
j min± |aj k1 ± ρ|〉2−N

.

Therefore, we have

T1 ≤ cNa
−1/2
j a−ε

j

∑
|k1|≥ρa−1−2ε

j

〈
a−2
j min± |aj k1 ± ρ|

〉2−N
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≤ cNa
−1/2
j a−2ε

j

∑
|k1|≥ρa−1−2ε

j

〈
min± |a−1

j k1 ± a−2
j ρ|

〉2−N

.

Note that a−2ε
j = nj = 22jε . Since

∫
|x|>ρa−1−2ε

j

〈|a−1
j x − a−2

j ρ|〉2−N
dx

= aj

∫
|y|>ρa−2−2ε

j

〈|y − a−2
j ρ|〉2−N

dy

≤ aj

∫
|y|>ρa−2

j

〈|y|〉2−N
dy

≤ cNa
1+2(N−3)
j ,

we obtain

T1 ≤ cNa
1/2−2ε+2(N−3)
j .

For T2, we have

T2

cNa
−1/2
j

≤
∑

k1∈Z,|k2|≥a−2ε
j

〈[
k2

2 + min±
(
a−1
j k1 ± a−2

j ρ
)2]1/2〉2−N

≤
∑

|k1|≤ρa−1−2ε
j ,|k2|≥a−2ε

j

〈[
k2

2 + min±
(
a−1
j k1

± a−2
j ρ

)2]1/2〉2−N

+
∑

|k1|>ρa−1−2ε
j ,|k2|≥a−2ε

j

〈[
k2

2 + min±
(
a−1
j k1

± a−2
j ρ

)2]1/2〉2−N

=: T2,1 + T2,2.

For T2,1, we have

T2,1 ≤ c

∫
|x1|<ρa−1−2ε

j

∫
|x2|>a−2ε

j

〈|x2|〉2−Ndx2dx1

≤ ca
−1+2(N−4)ε
j .

For T2,2, we have

T2,2 ≤ caj

∫
x1>ρa−2−2ε

j

∫
x2>a−2ε

j

〈∣∣(x1, x2)
∣∣〉2−N

dx2dx1

≤ ca
2(N−3)(1+2ε)
j .

Therefore,

T2 ≤ cNa
−3/2+2(N−1)ε
j .

For T3, we convert the result in Lemma 19 in the
Appendix to the discrete case as the following results in
Lemma 12.

Lemma 12 Let t1 = a2
j (k1 − �k2) and t2 = aj k2 with aj =

2−j .

(i) For t1 �= 0 and t2 �= 0, we have
∣∣〈wLj , σ

h
j,�,k

〉∣∣
≤ cNe

−ca−1
j a

−1/2
j |a2

j (k1 − �k2)|−N |aj k2|−NaN
j ,

and
∣∣〈wLj , σ

v
j,�,k

〉∣∣
≤ cNe

−ca−2
j a

−1/2
j |aj (k1 − �k2)|−N |aj k2|−Na2N

j .

(ii) When exactly one of t1 or t2 is 0 and ι ∈ {h,v}, we have
∣∣〈wL , σ ι

j,�,k

〉∣∣
≤ cL

[
max

{
a2
j |k1 − �k2|, aj |k2|

}]−L
a

−1/2
j e

−ca−1
j �

.

(iii) For t1 = t2 = 0 and ι ∈ {h,v}, we have
∣∣〈wL , σ ι

j,�,k

〉∣∣
≤ ca

−1/2
j e

−ca−1
j .

Continuation of the proof of Lemma 11 For t1 := a2
j ×

(k1 − �k2) �= 0 and t2 := aj k2 �= 0, we have

a3
j

∑
k∈Z2,t1 �=0,t2 �=0

|a2
j (k1 − �k2)|−N |aj k2|−N

≤ a3
j

∫
{x:x1 �=�x2,x2 �=0}

|a2
j (x1 − �x2)|−N |ajx2|−Ndx1dx2

< c ·
∫

|x1|≥1,|x2|≥1
|x1|−N |x2|−Ndx1dx2

< ∞.

Hence∑
k∈Z2,t1 �=0,t2 �=0

∣∣a2
j (k1 − �k2)

∣∣−N |aj k2|−N < ca−3
j .

Similarly, for t1 = 0 or t2 = 0, we have
∑

k∈Z2,t1=0 or t2=0

[
max

{
a2
j |k1 − �k2|, aj |k2|

}]−N
< ca−3

j .

The estimate for (iii) follows by direct computation. There-
fore, by the above estimates (i), (ii), and (iii), and that

T3 =
a−1
j∑

�=1

∑
k∈Z2,(t1,t2)�=0

∣∣〈wLj , σ
v
j,�,k

〉∣∣ +
a−1
j∑

�=1

∣∣〈wLj , σ
v
j,�,0

〉∣∣,
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we obtain

T3 ≤
a−1
j∑

�=1

cNa
−1/2
j e

−ca−1
j (a−3

j + 1) ≤ cNaN
j ∀N ≥ 0.

Similarly, for T4,

T4 ≤
a−1
j∑

�=1

cNa
−1/2
j e−ca−1(

a−3
j + 1

) ≤ cNaN
j ∀N ≥ 0.

Finally, since the “seam” elements σj,�,k are only slight
modifications of the σ ι

j,�,k , T5 ≤ cNaN
j for all N ≥ 0.

Combining the estimates for T1, . . . , T5, we are done. �

Next we estimate the cluster coherence

μc

(
Λj , {Mhj

ση}; {ση}
)

and show that it converges to zero as j → ∞ when hj is
related j by hj = o(2−j ) as j → ∞. We wish to remark that
the size of the gaps which can be filled with asymptotically
high precision is dramatically larger than the corresponding
size for wavelet inpainting.

Theorem 4 For hj = o(2−j ),

μc

(
Λj , {Mhj

ση}; {ση}
) → 0, j → ∞

with η = (ι, j, �, k) and ι ∈ {h,v,∅}.

Proof We have

μc

(
Λj , {Mhj

ση}; {ση}
)

= max
η2

∑
η1∈Λj

∣∣〈Mhj
ση1, ση2〉

∣∣

≤ max
η2,ι=v

∑
η1∈Λj

∣∣〈Mhj
ση1, ση2〉

∣∣

+ max
η2,ι=h

∑
η1∈Λj

∣∣〈Mhj
ση1, ση2〉

∣∣

+ max
η2,ι=∅

∑
η1∈Λj

∣∣〈Mhj
ση1, ση2〉

∣∣

=: T1 + T2 + T3.

We bound T1 using simple substitutions:

T1 ≤
∑

(ι;j,�,k)∈Λj

∣∣〈Mhj
σ v

j,�,k, σ
v
j,0,0

〉∣∣

≤
∑

(ι;j,�,k)∈Λj

∣∣∣∣
∫

R
2hj sinc(2hj ξ1)

[∫
R2

2−3jW

(
τ

22j

)

× W

(
(τ1 − ξ1, τ2)

22j

)
V

(
� + 2j τ1 − ξ1

τ2

)
V

(
2j τ1

τ2

)

× e
−2πi〈t,(τ−(ξ1,0))Av

2−j Sv
� 〉

dτ

]
dξ1

∣∣∣∣
≤ 2

(
2j hj

) ∑
(ι;j,�,k)∈Λj

∣∣∣∣
∫

R
sinc

(
2j 2hj ξ1

)

×
[∫

R2
W

(
τ1

2j
, τ2

)
W

(
τ1 − ξ1

2j
, τ2

)

× V

(
� + τ1 − ξ1

τ2

)
V

(
τ1

τ2

)
e2πit12j ξ1

× e
−2πi〈t,Av

1/aj
τ 〉

dτ

]
dξ1

∣∣∣∣
≤ 2

(
2j hj

) ∑
(ι;j,�,k)∈Λj

∣∣∣∣
∫

R
ĝj (τ )e

−2πi〈t,Av
1/aj

τ 〉
dτ

∣∣∣∣,

where t = Av
1/aj

Sv
� k with aj = 2−j and

ĝj (τ ) :=
∫

R
sinc

(
2j 2hj ξ1

)
V

(
� + τ1 − ξ1

τ2

)
e2πit12j ξ1dξ1

× W
(
τ1/2j , τ2

)
W

(
τ1 − ξ1

2j
, τ2

)
V

(
τ1

τ2

)
. (15)

Note that the support of W (τ1/2j , ·) and of W (
τ1−ξ1

2j , ·) of
variable τ2 is independent of j and the support of V (·/τ2) of
variable τ1 is depending only on τ2. Hence, ĝj (τ ) is smooth
and compactly supported on a box Ξ of volume independent
of j ,
∣∣∣∣
∫

ĝj (τ )e2πitτ dτ

∣∣∣∣ ≤ cN‖ĝj‖∞
〈|t |〉−N

.

Note that

‖ĝj‖∞ ≤ c
(
2jhj

)−1/2;
therefore,

T1 ≤ c
(
2jhj

)1/2 ∑
k∈Z2

〈|k|〉−N → 0, j → ∞.

We now bound T2:

T2 ≤
∑

(ι;j,�,k)∈Λj

∣∣〈M̂hj
σ̂ v

j,�,k, σ̂
h
j,�,0

〉∣∣

≤
∑

(ι;j,�,k)∈Λj

∫
R

2hj sinc(2hj ξ1)

×
[∫

R2
σ̂ v

aj ,s,0

(
τ − (ξ1,0)

)

× σ̂ h
aj ,s′,0(τ )e−2πi〈t,τ−(ξ1,0)〉dτ

]
dξ1
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≤
∑

(ι;j,�,k)∈Λj

∫
R2

[∫
R

2hj sinc(2hj ξ1)

× σ̂ v
aj ,s,0

(
τ − (ξ1,0)

)

× σ̂ h
aj ,s′,0(τ )dξ1

]
e−2πi〈t,τ−(ξ1,0)〉dτ

=:
∑

(ι;j,�,k)∈Λj

∫
R2

ĝj (τ )e−2πi〈t,τ 〉dτ,

where

ĝj (τ ) :=
∫

R
2hj sinc(2hj ξ1)σ̂

v
aj ,s,0

(
τ − (ξ1,0)

)

× σ̂ h
aj ,s′,0(τ )e2πit1ξ1dξ1.

Using integration by parts, we obtain
∣∣∣∣
∫

R2
ĝj (τ )e−2πi〈t,τ 〉dτ

∣∣∣∣
≤ cL,M

〈|t1|〉−L〈|t2|〉−M‖DL,Mĝj‖∞ supp(ĝj )

≤ cL,M

〈|t1|〉−L〈|t2|〉−M‖DL,Mĝj‖∞a−4
j ,

where

|DL,Mĝj |

≤ 2hj

∫
R

∣∣sinc(2hj ξ1)
∣∣∣∣DL,M

(
σ̂ v

aj ,s,0

(
τ − (ξ1,0)

)

× σ̂ h
aj ,s′,0(τ )

)∣∣dξ1

≤ 2hj

∥∥sinc(2hj ·)
∥∥

2

× ∥∥DL,M
(
σ̂ v

aj ,s,0

(
τ − (,0)

)
σ̂ h

aj ,s′,0(τ )
)∥∥

2

≤ cL,M2h
1/2
j

× ∥∥DL,M
(
σ̂ v

aj ,s,0

(
τ − (,0)

)
σ̂ h

aj ,s′,0(τ )
)∥∥∞a−1

j .

Since

∂N

∂τN
1

(
σ̂ v

a,s,0σ̂
h
a,s′,0

) = O
(
a

3/2
j aN

j

)
and

∂N

∂τN
2

(
σ̂ v

a,s,0σ̂
h
a,s′,0

) = O
(
a

3/2
j aN

j

)
.

Consequently, as j → ∞,

T2 ≤ h
1/2
j

∑
(ι;j,�,k)∈Λj

cN

〈|t1|〉−N 〈|t2|〉−N
a−4
j a−1

j a
3/2
j a2N

j

≤ a
2N−3/2
j hj → 0.

By construction, T3 ≤ 2−1/2(T1 + T2). �

Notice that—in contrast to the wavelet result—here we
require the stronger condition (2j hj ) → 0 as j → ∞ to han-
dle the additional angular component.

We now apply Proposition 1 to Lemmata 4 and 11 and
Theorem 4 to obtain the desired convergence for the nor-
malized �2 error of the reconstruction Lj from (3). In this
case L = wLj and Φ are shearlets σ ι

j,�,k at scale j .

Theorem 5 For hj = o(2−j ) and Lj the solution to (3) with
Φ the shearlet system defined using the Meyer wavelet,

‖Lj − wLj‖2

‖wLj‖2
→ 0, j → ∞.

This result shows that we have asymptotically perfect in-
painting as long as the size of the gap shrinks faster than
2−j . The similar result for wavelet inpainting, Theorem 2,
only guarantees such successful inpainting when the gap is
asymptotically smaller than 2−2j .

5.2 Thresholding

Our first claim concerns the set of the thresholding coeffi-
cients Tj := {η = (ι; j, �, k) : |〈wLj , ση〉| ≥ βj } for some
βj > 0.

Lemma 13 For hj = o(2−j ) as j → ∞, there exist thresh-
olds {βj }j such that, for all j ≥ j0,

{
(ι; j, �, k) : |k1| ≤ ρ22j (1+ν1), |k2|

≤ 22jν1, � = 0; ι = v
} ⊆ Tj

for some j0, ν1, and ν2 < 1/4.

Proof We first observe that

∣∣〈(1 − Mhj
)wLj , σ

v
j,�,k

〉∣∣
= ∣∣〈δ0 � ŵL j , σ̂

v
j,�,k

〉 − 〈
M̂hj

� ŵL j , σ̂
v
j,�,k

〉∣∣.
The first term equals

〈
δ0 � ŵL j , σ̂

v
j,�,k

〉

= 2j/2
∫ [∫

ŵ(ξ1)F
(
ξ1/22j , ξ2

)
W

(
ξ1/22j , ξ2

)

× V
(
� + 2−j ξ1/ξ2

)
e−2πi〈b1,ξ1〉dξ1

]
e−2πi〈22j b2,ξ2〉dξ2;

(16)

whereas, by using Lemma 5, we derive for the second term

〈
Mhj

wLj , σ
v
j,�,k

〉
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= 2hj

∫
sinc(2hj τ1)

∫
ŵ(ξ1)Fj (ξ1, ξ2)

× σ̂ v
j,�,k(ξ1 + τ1, ξ2)dξdτ1

= 2j/2
∫ [∫

ŵ(ξ1)2hj

∫
sinc(2hj τ1)F

(
ξ1/22j , ξ2

)

× W
(
ξ1/22j , ξ2

)
V

(
� + 2−j τ1 + ξ1

ξ2

)

× e−2πi〈b1,τ1+ξ1〉dτ1dξ1

]

× e−2πi〈22j b2,ξ2〉dξ2

=: 2j/2
∫

Ĝ(ξ2)e
−2πi〈22j b2,ξ2〉dξ2.

By standard arguments, we can deduce that

∣∣〈(1 − Mhj
)wLj , σ

v
j,�,k

〉∣∣ ≤ cN12j/2‖Ĝ‖∞
〈|22j b2|

〉−N1 .

By b2 = k2/22j due to b = (Av
2−j S

v−�)
T k, we have

∣∣〈(1 − Mhj
)wLj , σ

v
j,�,k

〉∣∣ ≤ cN12j/2‖Ĝ‖∞〈|k2|〉−N1 (17)

Let us now investigate the term ‖Ĝ‖∞ further. We define

Ĥξ2(ξ1)

= F
(
ξ1/22j , ξ2

)
W

(
ξ1/22j , ξ2

)
V

(
� + 2−j ξ1/ξ2

)

− 2hj

∫
sinc(2hj τ1)F

(
ξ2/22j , ξ2

)
W

(
ξ1/22j , ξ2

)

× V

(
� + 2−j ξ1 + τ1

ξ2

)
e−2πi〈b1,τ1〉dτ1

and hence need to analyze

‖Ĝ‖∞ =
∣∣∣∣
∫

ŵ(ξ1)Ĥξ2(ξ1)e
−2πi〈b1,ξ1〉dξ1

∣∣∣∣. (18)

By Plancherel’s theorem and the support properties of w,
∣∣∣∣
∫

ŵ(ξ1)Ĥξ2(ξ1)e
−2πi〈b1,ξ1〉dξ1

∣∣∣∣ = ∣∣(ŵĤξ2)
∨(−b1)

∣∣

≈ c

∣∣∣∣
∫ −b1+ρ

−b1−ρ

Hξ2(x)dx

∣∣∣∣.

We now need to compute H . Using well-known properties
of the Fourier transform, we manipulate Hξ2(x) to obtain

= (
F

(·/22j , ξ2
)
W

(·/22j , ξ2
)
V

(
� + 2−j (·/ξ2)

))∨
(x)

− ((
2hj sinc(2hj ·)e−2πib1·)

�
(
F

(·/22j , ξ2
)
W

(·/22j , ξ2
)

× V
(
� + 2−j (·/ξ2)

)))∨
(−x)

= (
F

(·/22j , ξ2
)
W

(·/22j , ξ2
)
V

(
� + 2−j (·/ξ2)

))∨
(x)

− (
2hj sinc(2hj ·)e−2πib1·)∨

(−x)

× (
F

(·/22j , ξ2
)
W

(·/22j , ξ2
)
V

(
� + 2−j · /ξ2

))∨
(−x)

= (
F

(·/22j , ξ2
)
W

(·/22j , ξ2
)
V

(
� + 2−j (·/ξ2)

))∨
(x)

− 1[−hj ,hj ](x − b1)

× (
F

(·/22j , ξ2
)
W

(·/22j , ξ2
)
V

(
� + 2−j · /ξ2

))∨
(−x).

Hence, since hj < ρ,
∣∣∣∣
∫ −b1+ρ

−b1−ρ

Hξ2(x)dx

∣∣∣∣

=
∣∣∣∣
∫ b1+ρ

b1−ρ

(
F

(·/22j , ξ2
)
W

(·/22j , ξ2
)

× V
(
� + 2−j (·/ξ2)

))∨
(x)

−
∫ b1+hj

b1−hj

(
F

(·/22j , ξ2
)
W

(·/22j , ξ2
)

× V
(
� + 2−j (·/ξ2)

))∨
(x)dx

∣∣∣∣

=
∣∣∣∣
∫ 2j (b1−hj )

2j (b1−ρ)

+
∫ 2j (b1+ρ)

2j (b1+hj )

(
F

(·/22j , ξ2
)
W

(·/22j , ξ2
)

× V
(
� + 2−j (·/ξ2)

))∨
(x)dx

∣∣∣∣.
Notice that this indeed makes sense, since the values k1 “in
between hj and ρ” should play an essential role. As already
observed in the proof of (17), we have b1 ≈ k1/2j for j large
and small |�k2| (since b1 = 2−j k1 + 2−2j �k2), and hence

c

∣∣∣∣
∫ −b1+ρ

−b1−ρ

H(x)dx

∣∣∣∣

≈ c

∣∣∣∣
∫ k1−2j hj

k1−2j ρ

+
∫ k1+2j ρ

k1+2j hj

(
F

(·/22j , ξ2
)
W

(·/22j , ξ2
)

× V
(
� + 2−j (·/ξ2)

))∨
(x)dx

∣∣∣∣.
Notice that this fact also implies that the function
(
F

(·/22j , ξ2
)
W

(·/22j , ξ2
)
V

(
� + 2−j (·/ξ2)

))∨

is independent of j . Due to the regularity of W , there exist
some N2 and c such that
∣∣(F (·/22j , ξ2

)
W

(·/22j , ξ2
)
V

(
� + 2−j (·/ξ2)

))∨
(x)

∣∣
≤ c

〈|x|〉−N2,

and hence by (18) and the previous computation,

‖Ĝ‖∞ ≤ c
〈
min

{|k1 − 2j ρ|, |k1 + 2j ρ|}〉−N2 . (19)
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Finally, we study how the term Ĥ relates to hj . For this, we
set

Ĵξ2(τ1) = F
(
ξ1/22j , ξ2

)
W

(
ξ1/22j , ξ2

)

× V

(
� + 2−j ξ1 + τ1

ξ2

)
e−2πi〈b1,τ1〉

Now,
∣∣Ĥξ2(ξ1)

∣∣
=

∣∣∣∣F
(
ξ1/22j , ξ2

)
W

(
ξ1/22j , ξ2

)
V

(
� + 2−j ξ1/ξ2

)

− 2hj

∫
sinc(2hj τ1)F

(
ξ1/22j , ξ2

)
W

(
ξ1/22j , ξ2

)

× V

(
� + 2−j ξ1 + τ1

ξ2

)
e−2πi〈b1,τ1〉dτ1

∣∣∣∣
=

∣∣∣∣Ĵξ2(0) − 2hj

∫
sinc(2hj τ1)Ĵξ2(τ1)dτ1

∣∣∣∣
=

∣∣∣∣Ĵξ2(0) −
∫

1̂[−hj ,hj ](τ1)Ĵξ2(τ1)dτ1

∣∣∣∣

=
∣∣∣∣Ĵξ2(0) −

∫ hj

−hj

Jξ2(x)dx

∣∣∣∣

=
∣∣∣∣
∫

|x|>hj

Jξ2(x)dx

∣∣∣∣.

Hence another way to estimate (18) is by

‖Ĝ‖∞ ≤ c‖Ĥ‖∞

≤ c max
ξ1,ξ2

∣∣∣∣
∫

|x|>hj

(
F

(
ξ1/22j , ξ2

)
W

(
ξ1/22j , ξ2

)

× V

(
� + 2−j · + ξ1

ξ2

))∨
(x − b1)dx

∣∣∣∣
≤ c max

ξ1,ξ2

∣∣∣∣
∫

|x|>2j hj

(
F

(
ξ1/22j , ξ2

)
W

(
ξ1/22j , ξ2

)

× V

(
� + · + 2−j ξ1

ξ2

))∨(
x − 2j b1

)
dx

∣∣∣∣.
Certainly, the minimum is attained in the center of the mask,
i.e., with b = 0. So by combining this with (17) and (19),
∣∣〈(1 − Mhj

)wLj , σ
v
j,�,k

〉∣∣

≤ c2j

∣∣∣∣
∫

|x|>22j hj

max
ξ1,ξ2

|
∫

|x|>2j hj

(
F

(
ξ1/22j , ξ2

)

× W
(
ξ1/22j , ξ2

)
V

(
� + · + 2−j ξ1

ξ2

))∨

× (
x − 22j b1

)
dx

∣∣∣∣

× 〈
min

{|k1 − 22j ρ|, |k1 + 22j ρ|}〉−N2〈|k2|〉−N1 ,

which is what we intend to use as a “model.” Observe that
this indeed is the right intuitive estimate, since the k2 com-
ponent has to decay rapidly away from zero thereby sens-
ing the singularity in zero in this direction. In contrast, the
k1 component stays greater or equal to 〈22j ρ〉−N2 up to the
point 2ρ22j and then decays rapidly in accordance with the
fact that until the point k1 = ρ22j we are “on” the line singu-
larity which decays smoothly up with ŵ. Also, the required
angle sensitivity is represented. Finally, the first term models
the behavior in the mask, which is also nicely supported by
the fact that the crucial product 22j hj is appearing therein.
Set

J (·) = F
(·/22j , ξ2

)
W

(·/22j , ξ2
)
V

(
� + 2−j (·/ξ2)

)
.

Since 2jhj → 0 as j → ∞, letting j → ∞ we have

∣∣∣∣
∫

|x|>2j hj

J̌ (x)dx

∣∣∣∣ ≤ C.

We now use

β = c2j/2(C − ε)
〈|2jε |〉−N1

× 〈
min

{|(2jε − 1
)
2j ρ|, |(2jε + 1

)
2j ρ|}〉−N2

as a threshold. It follows immediately that, for all j ≥ j0,

{
(ι; j, �, k) : |k1| ≤ ρ22j (1+ν1), |k2| ≤ 22jν1, � = 0; ι = v

}
⊆ Tj

for some j0 and ν1. �

Lemma 14
∑

η∈T c
j

|〈wLj , ση〉| = o(2j ), j → ∞.

Proof We observe from the proof of Lemma 11, that the
desired property is automatically satisfied provided that, for
all j ≥ j0, the set Tj contains

{
(ι; j, �, k) : |k1| ≤ ρ22j (1/2+ν1), |k2| ≤ 22jν1, � = 0, ι = v

}
,

for some ν1 > 0, which is the content of Lemma 8. �

We next analyze the second term in the estimate from
Proposition 3.

Lemma 15 For hj = o(2−j ) as j → ∞,

∑
η∈Tj

|〈Mhj
wLj , ση〉| = o

(
2j

)
, j → ∞.
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Proof First, we need to derive some estimates dependent on
(k, �) for the term |〈Mhj

wLj , σ
ι
j,�,k〉|. By using the defini-

tions of Mhj
and wLj and a change of variables, we obtain

〈
Mhj

wLj , σ
v
j,�,k

〉

= 2j/2
∫ [∫

ŵ(ξ1)2hj

∫
sinc(2hj τ1)F

(
ξ1/22j , ξ2

)

× W
(
ξ1/22j , ξ2

)
V

(
� + 2−j τ1 + ξ1

ξ2

)

× e−2πib1(τ1+ξ1)dτ1dξ1

]
e−2πi〈22j b2,ξ2〉dξ2.

Let Ĝ now be the function

Ĝ(ξ2) =
∫

ŵ(ξ1)2hj

∫
sinc(2hj τ1)F

(
ξ1/22j , ξ2

)

× W
(
ξ1/22j , ξ2

)
V

(
� + 2−j τ1 + ξ1

ξ2

)

× e−2πi〈b1,τ1+ξ1〉dτ1dξ1.

This function is supported on the set [1/16,1/2], which is
independent of j . By standard arguments, we can deduce
that
∣∣〈Mhj

wLj , σ
v
j,�,k

〉∣∣ ≤ cN12j/2‖Ĝ‖∞〈|k2|〉−N1 . (20)

Let us now investigate the term ‖Ĝ‖∞ further. We define

Ĥξ2(ξ1) = 2hj

∫
sinc(2hj τ1)F

(
ξ1/22j , ξ2

)
W

(
ξ1/22j , ξ2

)

× V

(
� + 2−j τ1 + ξ1

ξ2

)
e−2πi〈b1,τ1+ξ1〉dτ1,

and hence need to analyze

‖Ĝ‖∞ =
∣∣∣∣
∫

ŵ(ξ1)Ĥξ2(ξ1)e
−2πi〈b1,ξ1〉dξ1

∣∣∣∣. (21)

By Plancherel’s theorem and the support properties of w,
∣∣∣∣
∫

ŵ(ξ1)Ĥξ2(ξ1)e
−2πi〈b1,ξ1〉dξ1

∣∣∣∣ = ∣∣(ŵĤξ2)
∨(−b1)

∣∣

≈ c

∣∣∣∣
∫ −b1+ρ

−b1−ρ

Hξ2(x)dx

∣∣∣∣.

Next,

Hξ2(x)

=
((

2hj sinc(2hj ·)e−2πib1·)

�

(
F

( ·
22j

, ξ2

)
W

( ·
22j

, ξ2

)

× V
(
� + 2−j (·/ξ2)

)))∨
(−x)

= (
2hj sinc(2hj ·)e−2πib1·)∨

(−x)

× (
F

(·/22j , ξ2
)
W

(·/22j , ξ2
)

× V
(
� + 2−j (·/ξ2)

))∨
(−x)

= 1[−hj ,hj ](−x − b1)

× (
F

(·/22j , ξ2
)
W

(·/22j , ξ2
)

× V
(
� + 2−j (·/ξ2)

))∨
(−x).

Hence, since hj < ρ,

∣∣∣∣
∫ −b1+ρ

b−1−ρ

Hξ2(x)dx

∣∣∣∣

=
∣∣∣∣
∫ b1+hj

b1−hj

(
F

(·/22j , ξ2
)
W

(·/22j , ξ2
)

× V
(
� + 2−j (·/ξ2)

))∨
(−x)dx

∣∣∣∣

=
∣∣∣∣
∫ 2j (b1+hj )

2j (b1−hj )

(
F

(·/2j , ξ2
)
W

(·/2j , ξ2
)

× V
(
� + (·/ξ2)

))∨
(−x)dx

∣∣∣∣.

Notice that this indeed makes sense, since due to the mask-
ing, the length of the line singularity is not allowed to play
a role here. Since (k, �) ∈ Tj , we have

∣∣∣∣
∫ −b1+ρ

−b1−ρ

H(x)dx

∣∣∣∣

=
∣∣∣∣
∫ k1+2j hj

k1−2j hj

(
F

(·/2j , ξ2
)
W

(·/2j , ξ2
)

× V
(
� + (·/ξ2)

))∨
(−x)dx

∣∣∣∣.

Due to the regularity of W , there exists some N2 and c (pos-
sibly differing from the one before, but we do not need to
distinguish those) such that

∣∣(F (·/2j , ξ2
)
W

(·/2j , ξ2
)
V

(
� + (·/ξ2)

))∨
(−x)

∣∣
≤ c〈|x|〉−N2 ,

and hence by (21) and the previous computation,

‖Ĝ‖∞ ≤ c
〈
min

{|k1 − 2jhj |, |k1 + 2jhj |
}〉−N2 .

Combining this estimate with (20), we obtain
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∣∣〈Mhj
wLj , σ

v
j,�,k

〉∣∣
≤ c2j/2〈|k2|〉−N1

〈
min

{|k1 − 2jhj |, |k1 + 2jhj |
}〉−N2,

which is what we intend to use. Hence,

1

c

∑
η∈Tj

∣∣〈Mhj
wLj , ση〉

∣∣

≤ 2j/2
∑
η∈Tj

〈|k2|
〉−N1

〈
min

{|k1 − 2j hj |, |k1 + 2j hj |
}〉−N2

≤ 22j (1/4+ν2).

Since ν2 < 1/4, the lemma is proven. �

We now apply Proposition 3 to Lemmata 4, 14, and 15 to
obtain the desired convergence for the normalized �2 error
of the reconstruction Lj from ONE-STEP-THRESHOLDING

in Fig. 7. In this case x = wLj and Φ are shearlets σ ι
j,�,k at

scale j .

Theorem 6 For hj = o(2−j ) and Lj the solution to (4) with
Φ the shearlet system defined using the Meyer wavelet

‖Lj − wLj‖2

‖wLj‖2
→ 0, j → ∞.

This result shows that if the size of the gap shrinks faster
than 2−j , the gap can be asymptotically perfect inpainted.

6 A Comparison of Shearlet vs. Wavelets

From the results of previous sections, we see that the size of
the gaps which can be filled by shearlets (hj = o(2−j )) with
asymptotically high precision is larger than the correspond-
ing size for wavelets (hj = o(2−2j )); however, certainly we
still need to prove that we cannot do better than the pre-
sented rates for wavelets in order to show that shearlets per-
form better than wavelets. In fact, we show that the rates
presented for wavelets are indeed the “critical scales” for
the thresholding case.

Theorem 7 Let ψλ be the Meyer Parseval wavelets. Let T
be an index set such that

T ⊇ {(
ι, j,0, (k1,0)

) : |k1| ≤ 22j hj − K0
}

for some K0 > 0 and hj > 0. Then, we have

∑
λ∈T

|〈Mhj
wLj ,ψλ〉| = O

(
22j hj

)
.

Proof Recall that at level j , the signal wL is filtered with
the three corresponding frequency strips:

F̌j =
∑

ι∈{h,v,d}

(
Wι

(
2−2j ξ

) + Wι
(
2−2j−1ξ

))

with

F̃j =
∑

ι∈h,v,d

W ι
(
2−j ξ

)

so that

Fj = F̃2j + F̃2j+1.

We can consider each of the filtered signals; i.e., consider
wL ι

j := wL �F ι
j with ι = v,h, d . Since the signal is a hor-

izontal line segment, we only need to consider wL h
j . For

simplicity, we denote wLj := wL h
j , Fj := Fh

j , and ψλ =
ψh

j,k =: ψj,k . Note that F̃∨
j (x, y) = 22jφ(2j x)W̌ (2j y). We

want to estimate the coefficients |〈Mhj
wLj ,ψλ〉|. As with

other proofs for wavelets, we first consider w̃L j . By defi-
nition, we have

〈Mhj
w̃L j ,ψλ〉

=
∫

|x|<hj

∫
y∈R

w̃L j (x, y)ψλ(x, y)dydx

=
∫

|x|<hj

∫
y∈R

(
wL � F̃∨

j

)
(x, y)ψλ(x, y)dydx

=
∫

|x|<hj

∫
y∈R

∫
z∈R2

wL (z1, z2)

× F̃∨
j

(
(x, y) − (z1, z2)

)
dz

× ψλ(x, y)dydx.

Now, by the definition of wL , we have

〈Mhj
w̃L j ,ψλ〉

=
∫

|x|<hj

∫
y∈R

∫ ρ

−ρ

w(z)F̃∨
j (x − z, y)dzψλ(x, y)dydx

≈ c

∫
|x|<hj

∫
y∈R

∫ ρ

−ρ

F̃∨
j (x − z, y)dzψλ(x, y)dydx

= c

∫
|x|<hj

∫
y∈R

∫ ρ

−ρ

22jφ
(
2j (x − z)

)
W̌

(
2j y

)
dz

× 2jφ
(
2j x − k1

)
W̌

(
2j y − k2

)
dydx

= c2j

∫
y∈R

W̌
(
2j y

)
W̌

(
2j y − k2

)
dy22j

×
∫

|x|<hj

∫ ρ

−ρ

φ
(
2j (x − z)

)
dzφ

(
2j x − k1

)
dx
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= c22j

∫
|x|<hj

∫ ρ

−ρ

φ
(
2j (x − z)

)
dzφ

(
2j x − k1

)
dx

= c2j

∫
|x|<hj

∫ 2j ρ+2j x

−2j ρ+2j x

φ(z)dzφ
(
2j x − k1

)
dx

= c

∫ −k1+2j hj

−k1−2j hj

∫ 2j ρ+x+k1

−2j ρ+x+k1

φ(z)dzφ(x)dx.

For each x ∈ [−k1 − 2jhj ,−k1 + 2j hj ], we have x + k1 ∈
[−2jhj ,2j hj ]. Consequently, we have

[−2j ρ+x+k1,2j ρ+x+k1
] ⊇ [−2j (ρ−hj ),2j (ρ−hj )

]

for all x ∈ [−k1 − 2j hj ,−k1 + 2j hj ]. Note that ρ > hj .

Hence, when j is large enough, we have
∫ 2j ρ+x+k1
−2j ρ+x+k1

φ(z)dz

≈ c �= 0 due to
∫

φ(x)dx �= 0. Therefore, we have

〈Mhj
wLj ,ψλ〉

≈ c

(∫ −k1+22j hj

−k1−22j hj

+
∫ −k1+22j+1hj

−k1−22j+1hj

)
φ(x)dx.

As
∫

φ(x)dx �= 0, there exists K0 > 0 such that
∫

|x|<K

φ(x)dx ≥ c0

for some c0 > 0 as long as K > K0. Hence, when j is
large enough so that 22j hj > K0 and k1 ∈ [−(22j hj −
K0),22j h − K0], we have about 22j hj − K0 many coeffi-
cients that are larger than c0. Consequently, when j is large
enough, we have
∑
k∈T

∣∣〈Mhj
wLj ,ψλ〉

∣∣ = O
(
22j hj

)

as long as the index set T ⊇ {(ι, j,0, (k1,0)) : |k1| ≤
22j hj − K0}.

For the other orientations wL v
j and wL d

j , the co-
efficients are negligible following calculations similar to
above. �

In the proof of Proposition 4, we have

‖x� − x0‖2

= ‖Φ1T cΦ∗PKx0 + Φ1T Φ∗PMx0‖2

=: ‖T1 + T2‖2 ≥ ‖T2‖2 − ‖T1‖2.

In the wavelet threshold case, the first term corresponds
to T1 = ∑

k∈T c |〈wLj ,ψλ〉|, while the second term cor-
responds to T2 = ∑

k∈T 〈Mhj
· wLj ,ψλ〉 for some index

set T . As shown in the wavelet threshold, to guarantee that
the first term ‖T1‖2 is small, the index set T is chosen
such that T ⊇ {(k1, k2) : |k1| ≤ ρ22j (1+ν1), |k1| ≤ 22jν2}.

But then the second term ‖T2‖2 will be of order O(22j hj )

as shown above. If hj decays slower than order of O(2−j ),
then we have ‖Lj −wLj‖ = O(2j ). Thus, we have the fol-
lowing theorem:

Theorem 8 For hj = ω(2−j ) and Lj the solution to (4)
where Φ is the 2D Meyer Parseval system,

‖Lj − wLj‖2

‖wLj‖2
� 0, j → ∞.

That is, the wavelet threshold method does not fill the gap.
Heuristically, one can think about the situation when the
gap size hj is fixed as 1. Consider the wavelets 2jφ(2j x −
k1)W̌ (2j y). Then as j → ∞, the number of such wave-
lets that fall in the gap is about O(22j ). The norm
〈Mhj

wL ,ψλ〉 for any such wavelets in the gap is about
the same. Consequently, the total energy concentrated in the
gap will be about O(22j ).

When 22j hj → 0 and since |φ(x)| ≤ cN 〈|x|〉−N for any
N , we have

|〈Mhj
wLj ,ψλ〉|

≤ c22j hj

〈
min

{|k1 − 22j hj |, |k1 + 22j hj |
}〉−N

.

For the Meyer mother wavelets Wv = W̌ (x)φ(y) and Wd =
W̌ (x)ψ(y), the above inequality still holds. In this case, the
threshold method fills the gap.

Comparing Theorem 6 and Theorem 8, we see that
when the gap size hj decays like 2j , using the ONE-STEP-
THRESHOLDING algorithm produces a good approximation
of the original image if shearlets are used but does not if
wavelets are used.

Figure 10 shows a comparison of wavelet- and shearlet-
based inpainting results. In the left column, a seismic image
containing mainly curvilinear features is masked by 3 ver-
tical bars. Using 2D Meyer tensor wavelets or shearlets—
we refer to the ShearLab package in www.shearlab.org
for codes of shearlet transforms—, the coefficients of the
masked image are computed. After applying the threshold
and applying the backward transform we derive a first ap-
proximation of an inpainted image by leaving the known
part unchanged. These steps are then iterated with the
threshold becoming smaller at each iteration. The outcome
is illustrated in the middle column of Fig. 10. The last col-
umn is the zoom-in comparison. From this, we can also vi-
sually confirm that the shearlet system is superior to the
chosen wavelet system when inpainting images governed by
curvilinear structures such as the exemplary seismic image.

7 Extensions and Future Directions

As mentioned previously, we believe that this work and [34]
make important steps in a new direction of theoretical

http://www.shearlab.org
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Fig. 10 Left column: original image and missing data. Middle col-
umn: wavelet inpainting and shearlet inpainting. Right column: wavelet
zoom in and shearlet zoom in

analysis of inpainting problems. When taking into account
the similar results concerning geometric separation in [18]
and [36], clustered sparsity could provide a new paradigm to
prove theoretical results in a variety of problems involving
sparsity. With this in mind, we mention possible extensions
of this work as well as current limitations.

– More General Singularity Models. We anticipate that our
results can be generalized to a much broader setting.
In [18, 36], curvilinear singularities were segmented and
flattened out using the Tubular Neighborhood Theorem.
This was done in such a way as to be able to apply results
concerning the clustering of curvelet coefficients along
linear singularities to curvilinear singularities. Using this
technique, the results in this paper concerning line singu-
larities wL should be able to be extended to curvilinear
singularities.

– Different Masks. In this paper, we focus on a vertical strip
as mask. However, other typical masks are locally lin-
ear strips, and the analysis in our proofs occurred locally
around the missing singularity. It is possible to think of
a ball with radius h as mask, in which case similar re-
sults should be obtained. Other imaginable shapes could
be horizontal strips, flat ellipsoids, and other polygonal
objects.

– Different Recovery Techniques. Both hard and soft itera-
tive thresholding techniques are quite common and usu-
ally produce convincing results. The results in this paper
concern one-step-(hard)-thresholding rather than iterative
thresholding. As iterative thresholding is stronger than
one-pass thresholding, we strongly believe that a similar
abstract analysis can be derived leading to asymptotically
precise inpainting results in this case.

– Other Dictionaries. It should also be pointed out that
the results in Sect. 2 hold for all Parseval frames. Fur-
thermore, the asymptotic analysis in Sects. 4 and 5 hold
not only for the Meyer Parseval wavelets and shearlets,

but also, for instance, for radial wavelets—or any types
of wavelets with isotropic features at each scale similar
to the radial wavelets—and other directional multiscale
representation systems such as curvelets. The necessary
changes in the proofs are foreseeable. Also, the novel
framework of parabolic molecules advocated in [25]
could be applied. Furthermore given the construction of
3-dimensional shearlets in [26, 39–41], it seems likely
that the proofs in Sect. 5 and the Appendix will gener-
alize in a straight-forward but technical manner to the
3-dimensional case.

– Noise. Data is typically affected by noise, a situation we
considered in the abstract setting. This analysis can be di-
rectly applied also for the wavelet and shearlet inpainting
results, leading to the same asymptotical behavior, pro-
vided that the noise n is small comparing to the signal;
i.e., the �1 norm of Φ∗n is of order smaller than the �2

norm of filtered signal. However, in the literature, noise is
typically measured by the �2 not the �1 norm.

Appendix: Decay of Shearlet Coefficients Related to
Line Singularity

We present the idea of a continuous shearlet system in or-
der to prove various auxiliary results. For ι ∈ {h,w}, a > 0,
s ∈ R, and t ∈ R2, define

σ̂ ι
a,s,t (·) = a3/2W

(
a2·)V ι

(·Aι
aS

ι−s

)
e2πi〈·,t〉.

It is easy to show that σ ι
a,s,t = a−3/2σ ι,a,s(Sι

sA
ι
a−1(·− t)) for

some smooth function σ ι,a,s . For s = ±a, we similarly de-
fine the continuous version of the “seam” elements σa,±a,t .
The discrete shearlet system {σ ι

j,�,k} is then obtained by
sampling σ ι

a,s,t on the discrete set of points

{ι = h,w} × {
a = 2−j : j ∈ N

}

× {
s = � : � ∈ Z, |�| ≤ 2j

} × {
t ∈ Aι

2−j S
ι
−�Z

2}.
To prove that the choice of Λj offers clustered sparsity

for the shearlet frame, we need some auxiliary results. The
following lemma gives the decay estimate of the shearlet
elements.

Note that if we define 〈|t |a,s;ι〉 := 〈|Sι
sA

ι
a−1 t |〉, then

∣∣σ ι
a,s,t (x)

∣∣ ≤ cNa−3/2〈|x − t |a,s;ι
〉−N

.

The following lemma is needed later for estimating the
decay coefficients of the shearlet aligned with the singular-
ity.

Lemma 16 Let the line segment with respect to (a, s, t;v)

be Seg(a, s, t;v) := {Sv
s Av

a−1(x − t1,−t2) : |x| ≤ ρ}. Then
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1. Given the line

Line(a, s, t;v) := {
Sv

s Av
a−1(x − t1,−t2) : x ∈ R

}
,

the closest point PL to the origin on this line satisfies

d2
1 := ‖PL‖2

2 = a−4

1 + s2
t2
2 .

2. Set x0 = a−1s

1+s2 t2 + t1. If PS is the closest point on the
segment Seg(a, s, t;v) to the origin, then

d2
2 := ‖PS − PL‖2

2

=
{

min± a−2(1 + s2)(±ρ − x0)
2 x0 ∈ [−ρ,ρ]

0 x0 /∈ [−ρ,ρ].

Proof Let L(x) := Sv
s Av

a−1(x − t1,−t2). Then

∥∥L(x)
∥∥2

2 = ‖(a−1(x − t1), a
−1s(x − t1) − a−2t2

)‖2
2

= a−2(x − t1)
2 + a−2s2(x − t1)

2+ a−4t2
2

− 2a−3s(x − t1)t2

= a−2(1 + s2)(x − t1)
2 + a−4t2

2

− 2a−3s(x − t1)t2.

Solving d
dx

‖L(x)‖2 = 2(x − t1)a
−2(1 + s2)− 2a−3st2 =

0, we have x0 = a−1s

1+s2 t2 + t1. It follows that

‖PL‖2
2 = ∥∥L(x0)

∥∥2
2 =

∥∥∥∥L

(
a−1s

1 + s2
t2 + t1

)∥∥∥∥
2

2

= a−4

1 + s2
t2
2 =: d2

1 .

Note that PL ∈ Seg(a, s, t;v) if and only if x ∈ [−ρ,ρ],
in which case d2 = 0. Otherwise,

d2
2 = min± ‖L(±ρ) − PL‖2

2

= min± ‖L(±ρ) − PL‖2
2

= min± ‖(a−1(±ρ − x0),−a−1s(±ρ − x0)
)‖2

2

= min± a−2(1 + s2)(±ρ − x0)
2,

which completes the proof. �

We need another auxiliary lemma. Note that

〈wL , σ ι
a,s,t 〉 = 〈wLj , σ

ι
a,s,t 〉.

Lemma 17 Define RN(x0, y0) := ∫ ∞
y0

〈|(x0, α)|〉−Ndα

(which may be thought of as a ray integral). Then for y0 ≥ 0,

RN(x0, y0) ≤ π
〈|x0|

〉−1〈∣∣(x0, y0)
∣∣〉2−N

.

Proof Choose β ∈ (0,1). Then
∫ ∞

0
|f (α)|dα ≤

(
sup

t∈(0,∞)

|f (α)|β
)∫ ∞

0
|f (α)|1−βdα.

If we set (1 − β)N = 2 and f (t) = 〈|(x0, y0 + α)|〉−N , then
we obtain

RN(x0, y0) ≤
(

sup
v∈R(x0,y0)

〈|v|〉2−N
)∫ ∞

0

〈∣∣(x0, y0 +α)
∣∣〉−2

dα.

Since

∫ ∞

−∞
〈∣∣(x0, y)

∣∣〉−M
dy = 〈|x0|

〉−M
∫ ∞

−∞

〈
y

〈|x0|〉
〉−M

dy

= 〈|x0|
〉−M+1

∫ ∞

−∞
〈α〉−Mdα,

fixing M = 2 and recalling the classic identity π = ∫ ∞
−∞(1+

α2)−1dα yield the bound
∫ ∞

0

〈∣∣(x0, y0 + α)
∣∣〉−2

dα ≤ π
〈|x0|

〉−1
.

Furthermore, since y0 ≥ 0,

sup
v∈R(x0,y0)

〈|v|〉2−N = 〈∣∣(x0, y0)
∣∣〉2−N

.

This completes the proof. �

Now we can estimate the decay of the shearlet coeffi-
cients aligned with the line singularity wL as follows.

Lemma 18 Retaining the notation as above, we have

〈
wL , σ v

a,s,t

〉

≤ cN

a−1/2

√
1 + s2

RN

(
d1, a

−1
√

1 + s2d2
)

≤ cN

a−1/2

√
1 + s2

〈|d1|〉−1〈|(d1, a
−1

√
1 + s2d2)|

〉2−N
.

Proof We have

∣∣〈wL , σ v
a,s,t

〉∣∣ =
∣∣∣∣
∫ ρ

−ρ

w1(x)σ v
a,s,t (x,0)dx

∣∣∣∣

≤
∫ ρ

−ρ

∣∣σv
a,s,t (x,0)

∣∣dx

≤ cNa−3/2
∫

Seg(a,s,t;v)

〈|w|〉−N
dw, (22)

where we use an affine transformation of variables to turn
the anisotropic norm |(x,0)|a,s,t;v into the Euclidean norm
|w|. Application of the same transformation to [−ρ,ρ]×{0}
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yields Seg(a, s, t;v). The integral in (22) is along a curve
traversing Seg(a, s, t;v) at speed ν1 = a−1

√
1 + s2. If we

let Ray(a, s, t;v) denote the ray starting from PS and ini-
tially traversing Seg(a, s, t;v), then

a−3/2
∫

Seg(a,s,t;v)

〈|w|〉−N
dw

≤ a−3/2
∫

Ray(a,s,t;v)

〈|w|〉−N
dw

≤ a−3/2ν−1
∫

ν1Ray(a,s,t;v)

〈|w|〉−N
dw

≤ a−1/2

√
1 + s2

∫ ∞

ν1d2

〈∣∣(d1, t)
∣∣〉−N

dw

≤ a−1/2

√
1 + s2

RN(d1, ν1d2). �

Next, we estimate the decay of the shearlet coefficients
associated with those shearlets not aligned with the line sin-
gularity.

Lemma 19 Let t = (t1, t2). We consider the following three
cases:

(i) t1 �= 0 and t2 �= 0. Then we have

∣∣〈wL , σ v
a,s,t

〉∣∣ ≤ cL,M |t1|−L|t2|−Ma−1/2e−ca−1sa2M,

when 1 ≤ |s| < a−1

∣∣〈wL , σ h
a,s,t

〉∣∣ ≤ cL,M |t1|−L|t2|−Ma−1/2e−ca−2
aM

and for s = ±a−1

∣∣〈wL , σa,s,t 〉
∣∣ ≤ cL,M |t1|−L|t2|−Ma−1/2e−ca−1

aM.

(ii) If exactly one of t1 or t2 is 0, then we have

∣∣〈wL , σ ι
a,s,t

〉∣∣ ≤ cL|t2
1 + t2

2 |−L/2
a−1/2e−ca−1s , ι = h,v.

(iii) t1 = t2 = 0. Then we have

∣∣〈wL , σ ι
a,s,t

〉∣∣ ≤ ca−1/2e−ca−1
, ι = h,v.

Proof First, it is easy to show that

∂L

∂ξL
1

∂M

∂ξM
2

|σ̂ v
a,s,0| ≤ cL,Ma3/2aLa2M.

By definition of the line singularity wL , we have

〈
wL , σ v

a,s,t

〉

=
∫ ∫

ŵ(ξ1)σ̂
v
a,s,t (ξ1, ξ2)dξ1dξ2

=
∫

e−2πit2ξ2

[∫
ŵ(ξ1)σ̂

v
a,s,0(ξ1, ξ2)e

−2πit1ξ1dξ1

]
dξ2.

For t1 �= 0 and t2 �= 0, when we repeatedly apply integration
by parts, we have
∣∣〈wL , σ v

a,s,t

〉∣∣ ≤ C|t2|−M |t1|−L‖hL,M‖L1(R),

where

hL,M(ξ2) =
∫

DL,M
(
ŵ(ξ1)σ̂

v
a,s,0(ξ1, ξ2)

)
dξ1,

and for some function f which is sufficiently differentiable
we define the multi index,

DL,Mf (η1, η2) =
(

∂

∂η1

)L(
∂

∂η2

)M

f (η1, η2).

The next step is to estimate the term |hL,M(ξ2)|.
Let Ξa,s(ξ2) be the support of the function

ξ1 �→ DL,M
(
ŵ(ξ1)σ̂

v
a,s,0(ξ1, ξ2)

)
.

Note that for fixed a, s, the function ξ1 �→ ŵ(ξ1) ×
σ̂ v

a,s,0(ξ1, ξ2) is supported inside [ca−1|s|, 1
2a−1s) for a con-

stant c < 1
2 . hL,M can then be written as

hL,M(ξ2) =
∫

Ξa,s (ξ2)

DL,M
(
ŵ(ξ1)σ̂

v
a,s,0(ξ1, ξ2)

)
dξ1.

We then rewrite the integrand as

DL,M
(
ŵ(ξ1)σ̂

v
a,s,0(ξ1, ξ2)

)

=
L∑

�=0

(
L

�

)
ŵ(�)(ξ1)D

L−�,M
(
σ̂ v

a,s,0(ξ1, ξ2)
)

Thus |hL,M(ξ2)| is bounded by

|hL,M(ξ2)|

≤
L∑

�=0

(
L

�

)∣∣∣∣
∫

Ξ(a,s)(ξ2)

ŵ(�)(ξ1)D
L−�,M

× (
σ̂ v

a,s,0(ξ1, ξ2)
)
dξ1

∣∣∣∣

≤
L∑

�=0

(
L

�

)
‖ŵ(�)()‖L1[ca−1|s|,a−1|s|)NL−�,M(a, s)

≤ cL,Me−ca−1s

L∑
�=0

(
L

�

)
NL−�,M(a, s)

≤ cL,Me−ca−1sa3/2a2M

where

NL−�,M(a, s) = ∥∥DL−�,Mσ̂ v
a,s,0(ξ1, ξ2)

∥∥
L∞(Ξa,s (ξ2))
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Consequently, we have

‖hL,M‖L1(R) ≤ cL,Ma−2e−ca−1sa3/2aM

≤ cL,Ma−1/2e−ca−1sa2M.

Therefore,

∣∣〈wL , σ v
a,s,t

〉∣∣ ≤ cL,M |t1|−L|t2|−Ma−1/2e−ca−1sa2M.

Using the same approach, it is not difficult to show that
for |s| < a−1,

∣∣〈wL , σ h
a,s,t

〉∣∣ ≤ cL,M |t1|−L|t2|−Ma−1/2e−ca−2
aM,

and for s = ±a−1

∣∣〈wL , σa,s,t 〉
∣∣ ≤ cL,M |t1|−L|t2|−Ma−1/2e−ca−1

aM.

The proofs for other cases are similar with simple modi-
fications of the above procedure. �
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