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Having the advantages of redundancy and flexibility, various types of tight frames 
have already shown impressive performance in applications such as image and video 
processing. For example, the undecimated wavelet transform, which is a particular 
case of tight frames, is known to have good performance for the denoising problem. 
Empirically, it is widely known that higher redundancy rate of a tight frame often 
leads to better performance in applications. The wavelet/framelet transform is often 
implemented in an undecimated fashion for the purpose of better performance in 
practice. Though high redundancy rate of a tight frame can improve performance 
in applications, as the dimension increases, it also makes the computational 
cost skyrocket and the storage of frame coefficients increase exponentially. This 
seriously restricts the usefulness of such tight frames for problems in moderately 
high dimensions such as video processing in dimension three. Inspired by the 
directional tensor product complex tight framelets TP-CTFm with m ≥ 3 in 
[15,20] and their impressive performance for image processing in [20,33], in this 
paper we introduce directional tensor product complex tight framelets TP-CTF↓

m

(called reduced TP-CTFm) with low redundancy. Such TP-CTF↓
m are particular 

examples of tight framelet filter banks with mixed sampling factors. In particular, 
we shall develop a directional tensor product complex tight framelet TP-CTF↓

6 such 
that it performs nearly as well as the original TP-CTF6 in [20] for image/video 
denoising/inpainting but it has significantly lower redundancy rates than TP-CTF6

in every dimension. The TP-CTF↓
6 in d dimensions not only offers good directionality 

as the original TP-CTF6 does but also has the low redundancy rate 3d−1
2d−1 (e.g., the 

redundancy rates are 2, 2 2
3 , 3

5
7 , 5

1
3 and 7 25

31 for dimension d = 1, . . . , 5, respectively), 
in comparison with the redundancy rate 2d × 3d−1

2d−1 of TP-CTF6 in dimension d. 
Moreover, our numerical experiments on image/video denoising and inpainting show 
that the performance using our proposed TP-CTF↓

6 is often comparable with or 
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sometimes better than several state-of-the-art frame-based methods which have 
much higher redundancy rates than that of TP-CTF↓

6.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction and motivations

Though wavelets have many useful applications, they have several shortcomings in dealing with multi-
dimensional problems. For example, tensor product real-valued wavelets are known for lack of the desired 
properties of translation invariance and directionality [6,23,31]. There are a lot of papers in the current 
literature to improve the performance of classical tensor product (i.e., separable) real-valued wavelets by 
remedying these two shortcomings. In one direction, translation invariance of wavelets can be improved 
by using wavelet frames instead of orthonormal wavelets (see [6,7,12,14,16–18,30,31] and many references 
therein). For example, the undecimated wavelet transform [6] using Daubechies orthonormal wavelets has 
been known to be effective for the denoising problem. In fact, such an undecimated wavelet transform em-
ploys a particular case of tight frames with high redundancy. A countable set {hk}k∈Λ of elements in a 
Hilbert space H equipped with an inner product 〈·, ·〉 is called a frame if there exist positive constants C1

and C2 such that

C1〈h, h〉 �
∑
k∈Λ

|〈h, hk〉|2 � C2〈h, h〉, ∀ h ∈ H.

In particular, it is called a (normalized) tight frame if C1 = C2 = 1. If H is a finite dimensional space 
with dimension d, then the redundancy rate of a frame {hk}k∈Λ is naturally defined to be #Λ

d , where #Λ
is the cardinality of the index set Λ. Note that an orthonormal basis in H is a particular tight frame 
with the redundancy rate one. Comparing with an orthonormal basis, a (tight) frame is more general 
and has redundancy by allowing more elements into its system. The added redundancy of a tight frame 
not only improves the property of translation invariance but also makes the design of a tight frame more 
flexible (see [6,7,12,14,16–18,21,30] and references therein). In the other direction, many papers in the 
literature have been studying directional representation systems, to only mention a few here, curvelets 
in [1,2,34], contourlets in [8], shearlets in [10,11,21,23–25,27,28] and many references therein, surfacelets 
in [29], dual tree complex wavelet transform in [22,31,32], complex tight framelets in [14,15,17,18,20], plus 
many other directional representation systems. To improve directionality of tensor product real-valued 
wavelets, due to the requirement of the additional angular resolution for a directional representation system, 
it is almost unavoidable to employ either a tight frame or a frame instead of an orthonormal basis by 
allowing redundancy. In fact, to our best knowledge, all currently known representation systems, having 
either directionality and/or (near) translation invariance, employ either a frame or a tight frame with 
various degrees of redundancy. The directional tensor product complex tight framelets in [15,20] and their 
reduced versions with low redundancy in this paper are different in nature from many known directional 
representation systems such as curvelets and shearlets. This issue will be addressed and explained in details 
in Section 3.2.

In the following, let us introduce a fast framelet transform and explain by what we mean the redundancy 
rate of a transform or a system. To this end, let us recall the definition of a tight framelet filter bank. 
For u = {u(k)}k∈Zd ∈ l1(Zd), we define the Fourier series (or symbol) û of the sequence u to be û(ξ) :=∑

k∈Zd u(k)e−ik·ξ, ξ ∈ Rd. Note that û is a 2πZd-periodic function satisfying û(ξ + 2πk) = û(ξ) for all 
k ∈ Zd. For a, b1, . . . , bs ∈ l1(Zd), we say that {a; b1, . . . , bs} is a (d-dimensional dyadic) tight framelet filter 
bank if
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|â(ξ)|2 +
s∑

�=1

|b̂�(ξ)|2 = 1 and â(ξ)â(ξ + πω) +
s∑

�=1

b̂�(ξ)b̂�(ξ + πω) = 0, ∀ ω ∈ ([0, 1]d ∩ Zd)\{0}

for almost every ξ ∈ Rd. Moreover, a (d-dimensional dyadic) tight framelet filter bank {a; b1, . . . , bs}
with s = 2d − 1 is called a (d-dimensional dyadic) orthonormal wavelet filter bank. A d-dimensional 
tight framelet (or orthonormal wavelet) filter bank is often obtained through tensor product. For one-
dimensional filters u1, . . . , ud ∈ l1(Z), we define their d-dimensional tensor product filter u1 ⊗ · · · ⊗ ud by 
(u1 ⊗ · · ·⊗ud)(k1, . . . , kd) := u1(k1) · · ·ud(kd) for k1, . . . , kd ∈ Z. In particular, we define ⊗du := u ⊗ · · ·⊗u

with d copies of u. If {a; b1, . . . , bs} is a one-dimensional (dyadic) tight framelet filter bank (or an orthonormal 
wavelet filter bank with s = 1), then it is straightforward to check that ⊗d{a; b1, . . . , bs} is a d-dimensional 
dyadic tight framelet (or orthonormal wavelet) filter bank. As discussed in [13,14], tight framelet filter banks 
are closely linked to tight framelets in L2(Rd). See [7,12–14,16–18,30] as well as Section 2 for connections 
of tight framelet filter banks with tight framelets in L2(Rd).

A fast wavelet/framelet transform is implemented through the operations of convolution and sampling. 
Let v ∈ l∞(Zd) be a d-dimensional input signal and let u be a filter from a given d-dimensional tight framelet 
filter bank {a; b1, . . . , bs}. Roughly speaking, for the decomposition/forward transform, the data v is first 
convolved with the flip-conjugate filter u� (that is, u�(k) := u(−k), k ∈ Zd) as v ∗u� :=

∑
k∈Zd v(k)u�(· −k)

and then it is downsampled as w := (v ∗ u�) ↓ 2Id := (v ∗ u�)(2·), where w is called the sequence of 
frame coefficients. The decomposition transform can be applied recursively J times with v being replaced 
by (v ∗ a�) ↓ 2Id (that is, u = a) as the new input data, where J ∈ N is the decomposition level. For 
the reconstruction/backward transform, the coefficient sequence w is upsampled as (w ↑2Id)(k) := w(k/2)
if k ∈ 2Zd and (w ↑ 2Id)(k) := 0 for k ∈ Zd\[2Zd], and then it is convolved with u as (w ↑ 2Id) ∗ u. 
Finally, all the reconstructed sequences are added together as one reconstructed data. See Fig. 2 for an 
illustration of a two-level fast framelet transform employing a one-dimensional dyadic tight framelet filter 
bank {a; b1, . . . , bs} (but with 

√
4, ↓4, ↑4 in Fig. 2 being replaced by 

√
2, ↓2, ↑2, respectively). See Section 2

for more details on a fast framelet transform.
Most d-dimensional problems and data in applications have finite length. For a given real-valued data v

of finite length, one first extends it into a periodic sequence ve on Zd. Then one performs a wavelet/framelet 
transform on the extended data ve. This induces a linear transform on the original data v and the decom-
position transform can be rewritten using a matrix W. More precisely, we can arrange the d-dimensional 
real-valued data v properly so that it can be regarded as an n × 1 column vector in Rn, that is, v ∈ Rn. 
Performing a linear transform W on v, we obtain another column vector w := Wv ∈ RN of frame coeffi-
cients. If {a; b1, . . . , bs} with s = 2d − 1 is a real-valued orthonormal wavelet filter bank, then N = n and 
W is a real-valued n × n orthogonal matrix satisfying WTW = In. If {a; b1, . . . , bs} is a real-valued tight 
framelet filter bank, then we must have N ≥ n and W is a real-valued N ×n matrix satisfying WTW = In. 
Therefore, the ratio N/n is the redundancy rate of the linear transform W or its underlying tight frame, 
since it is the ratio between the N number of frame coefficients over the n number of original input data. 
Also note that the redundancy rate N/n is independent of the length n of input data and depends only on 
the number s of high-pass filters and the sampling factor (which is 2Id here).

We now look at the redundancy rate of an undecimated wavelet/framelet transform (denoted by UFTs) 
using tensor products of a one-dimensional real-valued tight framelet filter bank {a; b1, . . . , bs} (when 
s = 1, it is an orthonormal wavelet filter bank and UFT1 becomes UWT—the undecimated wavelet trans-
form). Here the word undecimated means that the upsampling and downsampling operations in a standard 
wavelet/framelet transform are completely removed. Undecimated framelet transforms using spline tight 
framelet filter banks {aB2 ; ̊b1, ̊b2} and {aB4 ; b1, b2, b3, b4} with âBm(ξ) := 2−m(1 + e−iξ)m have applications to 
several image restoration problems as reported in [3–5,9,26] and many references therein. The tensor product 
d-dimensional tight framelet filter bank is ⊗d{a; b1, . . . , bs} which consists of one real-valued low-pass filter 
⊗da and (s +1)d−1 real-valued high-pass filters. If the decomposition level is J ∈ N, the redundancy rate of 
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Table 1
Comparison of redundancy rates of various tight frames for different dimensions d. UWT is the undecimated wavelet transform 
with decomposition level J = 3 and using the tensor product of a 1D real-valued orthonormal wavelet filter bank {a; b}. UFTs is 
the undecimated framelet transform with decomposition level J = 3 and using the tensor product of a 1D real-valued tight framelet 
filter bank {a; b1, . . . , bs}. (Hence, UWT is just UFT1.) DT-CWT is the dual tree complex wavelet transform. TP-CTFm is the 
tensor product complex tight framelet with m = 3, 4, 5, 6. TP-CTF↓

6 is our proposed tensor product complex tight framelet with 
low redundancy. It is interesting to point out here that TP-CTF↓

6 has the same low redundancy rate as TP-CTF3, but TP-CTF↓
6

enjoys the same directionality as TP-CTF6.

d 1 2 3 4 5 6 7 8 9 10
UWT 4 10 22 46 94 190 383 766 1534 3070
UFT2 7 25 79 241 727 2185 6559 19 681 59 047 177 145
UFT4 13 73 373 1873 9373 46 873 234 373 1 171 873 5 859 373 29 296 873
DT-CWT 2 4 8 16 32 64 128 256 512 1024
TP-CTF3 2 2 2

3 3 5
7 5 1

3 7 25
31 11 5

9 17 27
127 25 37

51 38 264
511 57 67

93
TP-CTF4 2 4 8 16 32 64 128 256 512 1024
TP-CTF5 4 8 17 5

7 41 3
5 100 24

31 248 615 19
127 1531 73

85 3822 82
511 9546 2

31

TP-CTF6 4 10 2
3 29 5

7 85 1
3 249 25

31 739 5
9 2203 27

127 6585 37
51 19 720 264

511 59 105 67
93

TP-CTF↓
6 2 2 2

3 3 5
7 5 1

3 7 25
31 11 5

9 17 27
127 25 37

51 38 264
511 57 67

93

the d-dimensional undecimated framelet transform using the tensor product real-valued tight framelet filter 
bank ⊗d{a; b1, . . . , bs} is ((s +1)d− 1)J +1. To take advantages of the multiscale structure of wavelets, it is 
necessary that the decomposition level J should be as high as possible by taking into account the resolution 
of a given data or image. For example, for a standard 512 × 512 grayscale image, the wavelet decomposition 
level is often set to be at least J = 5 (note that 512 = 29). Let us here take a moderate choice of J = 3
(for a typical 512 × 512 grayscale image) and use the smallest s = 1 (that is, we are using an orthonormal 
wavelet filter bank). For dimension d = 3 and J = 3, the redundancy rate of a tensor product undecimated 
wavelet transform is 22. However, as we mentioned before, tensor product real-valued orthonormal wavelets 
lack directionality and translation invariance. To improve directionality or translation invariance, we must 
use a tight framelet filter bank with s ≥ 2. For d = 3 and J = 3, the redundancy rates of UFTs are 
22, 79, 190, 373, 646 for s = 1, . . . , 5, respectively. See Table 1 for a numerical illustration on redundancy 
rates of an undecimated wavelet/framelet transform.

By employing a pair of two correlated one-dimensional real-valued orthonormal wavelet filter banks, the 
dual tree complex wavelet transform (DT-CWT) offers directionality and (near) translation invariance with 
the redundancy rate 2d in d dimensions for any decomposition level J ∈ N. See [22,31,32] and [20, Section 2]
as well as references therein for more details on DT-CWT. One-dimensional finitely supported complex-
valued tight framelet filter banks have been extensively studied in [16–18]. A family of directional tensor 
product complex tight framelet filter banks (TP-CTF) has been initially introduced in [15] and further 
developed in [20] for the purpose of image denoising. The family of one-dimensional complex tight framelet 
filter banks introduced and used in [15,20] is CTFm, where m ≥ 3 is the total number of filters in CTFm. 
The low-pass filter in CTFm is real-valued but its high-pass filters are complex-valued. If m is odd, then 
the d-dimensional tensor product tight framelet filter bank TP-CTFm has one real-valued low-pass filter 
and md − 1 complex-valued high-pass filters. Consequently, its redundancy rate is no more than m

d−1
2d−1 for 

dimension d and for any decomposition level J ∈ N. If m is even, then the d-dimensional tensor product tight 
framelet filter bank TP-CTFm has one real-valued low-pass filter and md − 2d complex-valued high-pass 
filters. Therefore, its redundancy rate is no more than m

d−2d

2d−1 for dimension d and for any decomposition 
level J ∈ N. For both the dual tree complex wavelet transform DT-CWT and the tensor product complex 
tight framelets TP-CTFm, a complex frame coefficient is counted as two real frame coefficients in the cal-
culation of their redundancy rates. See Section 3 for more detailed explanation about the redundancy rates 
of TP-CTFm. The frequently used tensor product complex tight framelets for image denoising in [20] are 
TP-CTF4 and TP-CTF6. The TP-CTF4 has almost the same performance, directionality and redundancy 
rate as those of DT-CWT. The TP-CTF6 has much better performance than TP-CTF4 and DT-CWT for 
image denoising in [20] and image inpainting in [33], but it has higher redundancy rate 6d−2d

d for dimen-
2 −1
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sion d. See Table 1 for some numerical illustration on redundancy rates of TP-CTFm. See [15,20] as well 
as Section 3 for more detailed discussion on directional tensor product complex tight framelets and their 
redundancy rates.

Beyond the above tensor product (i.e., separable) transforms for multidimensional problems, to achieve 
directionality, there are also many nonseparable approaches. We shall use the notation dD to stand for d
dimensions or d-dimensional. Some examples of such nonseparable transforms are 2D and 3D curvelets in 
[1,2,34], 2D contourlets in [8], 2D and 3D shearlets in [10,21,23,25,27,28] and references therein, 3D sur-
facelets in [29], and directional tight framelets in [12,14,21], etc. The redundancy rates of such nonseparable 
transforms depend on the choices of the numbers of directions at each resolution level and the decomposition 
level J ∈ N. Generally speaking, to achieve reasonably good performance in applications, those nonsepa-
rable transforms often have much higher redundancy rates than those of the tensor product transforms 
using the dual tree complex wavelet transform and directional complex tight framelets. See Section 4 for 
the redundancy rates and performance of several nonseparable transforms using directional representation 
systems.

Though empirically higher redundancy rate of a tight frame often leads to better performance in ap-
plications, the computational costs increase exponentially with respect to higher redundancy rate and 
dimensionality. This causes serious constraints on computational expenses and storage requirement for 
multidimensional problems. To our best knowledge, most of the above mentioned directional representa-
tion systems and tight frames can achieve reasonably good performance with computational costs being 
manageable by a standard PC for two-dimensional problems. However, for applications in three or higher 
dimensions such as video processing, the expensive computational cost becomes a serious issue, without 
even mentioning the fact that one often tends to increase the redundancy rates in order to achieve reason-
ably good performance for applications in three or higher dimensions. This difficulty seriously restricts the 
usefulness of such tight frames and directional representation systems for multidimensional problems (in 
particular, for problems in moderately high dimensions such as video processing in dimension three). Moti-
vated by the approach of directional tensor product complex tight framelets in [15,20], to remedy the above 
mentioned difficulty, in this paper we shall construct a tight wavelet frame having the following desired 
properties:

(i) The tight frame is obtained through the tensor product of a one-dimensional tight framelet filter bank.
(ii) The tight frame has low redundancy rate and all its high-pass elements have good directionality.
(iii) The tight frame has good performance for applications such as denoising and inpainting, comparing with 

more complicated directional representation systems and tight frames with much higher redundancy 
rates.

The tensor product structure in item (i) and low redundancy rate in item (ii) of such a tight frame make 
it computationally efficient and attractive, while low redundancy also significantly reduces the storage re-
quirement for frame coefficients. Good directionality in item (ii) is needed in order to have good performance 
as required in item (iii). In this paper we shall achieve all the above goals by modifying the construction of 
directional tensor product complex tight framelet filter banks TP-CTFm with m ≥ 3 in [15,20]. Though our 
approach can be easily applied to all TP-CTFm, for simplicity of presentation, in this paper we mainly focus 
our attention to one particular example: the directional tensor product complex tight framelet TP-CTF6, 
whose underlying one-dimensional tight framelet filter bank is CTF6. As demonstrated in [20] for image 
denoising and in [33] for image inpainting, this TP-CTF6 has much better performance than DT-CWT, 
TP-CTF4, curvelets, 2D shearlets, real-valued spline tight frames, discrete cosine transform, and many other 
frame-based methods. In this paper we significantly reduce the redundancy rate of TP-CTF6. As a conse-
quence, we denote our modified directional tensor product complex tight framelet by TP-CTF↓

6 and call it 
(redundancy) reduced TP-CTF6, where the superscript ↓ here means that TP-CTF↓

6 is a reduced (or further 
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downsampled) version of TP-CTF6 by decreasing its redundancy rate while trying to keep all the desirable 
properties of the original TP-CTF6. As we shall see in Section 3, the redundancy rate of TP-CTF↓

6 is 3d−1
2d−1

for dimension d and for any decomposition level J ∈ N, while as we discussed before, the redundancy rate 
of TP-CTF6 is 6d−2d

2d−1 = 2d × 3d−1
2d−1 (that is, the redundancy rate of TP-CTF6 is 2d times that of TP-CTF↓

6
in dimension d). See Table 1 for an illustration and comparison of redundancy rates of various tight frames. 
The construction of other TP-CTF↓

m will also be briefly addressed in this paper. One of our main goals 
in this paper is to concretely construct a directional tensor product complex tight framelet TP-CTF↓

6 such 
that it performs nearly as well as the original TP-CTF6 in [20] for image/video denoising/inpainting but 
has significantly lower redundancy rates than TP-CTF6 in every dimension.

The structure of the paper is as follows. In order to study tensor product complex tight framelets with low 
redundancy, in Section 2 we shall generalize the notion of dyadic tight framelet filter banks by introducing 
tight framelet filter banks with mixed sampling factors. Then we shall study their various properties and fast 
framelet transforms of such tight framelet filter banks with mixed sampling factors in Section 2. In Section 3, 
we shall recall the tensor product complex tight framelet filter banks TP-CTFm and their underlying 
one-dimensional complex tight framelet filter banks CTFm with m ≥ 3 from [15,20]. Next, we shall provide 
some explanation for the directionality of tensor product complex tight framelets and their differences to 
several other known directional representation systems. We shall also discuss several features of TP-CTF6
and explain why we are particularly interested in TP-CTF6 instead of other TP-CTFm with m ≥ 3 for 
the purpose of image and video processing. Then we shall discuss the redundancy rates of TP-CTFm. Next 
we shall provide details on our construction of directional tensor product complex tight framelet TP-CTF↓

6
with low redundancy. Such TP-CTF↓

6 is a particular example of tight framelet filter banks with mixed 
sampling factors in Section 2. Though our approach can be easily applied to all TP-CTFm with m ≥ 3, for 
simplicity of presentation, we discuss TP-CTF6 in detail in Section 3 while we only outline the general idea 
for constructing other TP-CTF↓

m. In Section 4, we shall test the performance of our proposed directional 
complex tight framelet TP-CTF↓

6 with low redundancy rate and compare its performance with several 
state-of-the-art frame-based methods. Our numerical experiments on image/video denoising and inpainting 
show that the performance using our tensor product directional complex tight framelet TP-CTF↓

6 with low 
redundancy is often comparable with or sometimes better than several state-of-the-art frame-based methods 
which often have much higher redundancy rates. Moreover, our numerical experiments show that TP-CTF↓

6
is particularly effective for images and videos having rich textures.

2. Tight framelet filter banks with mixed sampling factors

In this section we shall introduce tight framelet filter banks with mixed sampling factors and then study 
their properties. As we shall see later in Section 3, our proposed directional tensor product complex tight 
framelet TP-CTF↓

6 with low redundancy is a particular case of tight framelet filter banks with mixed 
sampling factors.

2.1. Fast framelet transform using tight framelet filter banks with mixed sampling factors

Our key idea to derive a directional tight framelet with low redundancy from the tensor product complex 
tight framelet filter banks TP-CTFm in [15,20] is to use higher sampling factors such as 4Id instead of 2Id. To 
this end, let us generalize the definition of a (d-dimensional dyadic) tight framelet filter bank {a; b1, . . . , bs}, 
which uses the uniform sampling matrix 2Id, where Id is the d × d identity matrix.

Let M be a d × d invertible integer matrix. For a sequence u = {u(k)}k∈Zd : Zd → C, the downsampling 
sequence u ↓M and the upsampling sequence u ↑M with the sampling matrix M are defined by

[u↓M](k) := u(Mk), k ∈ Zd and [u↑M](k) :=
{
u(M−1k), if k ∈ MZd,

d d
0, if k ∈ Z \[MZ ].
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We call M the sampling factor or matrix. When MZd = Zd (that is, | det(M)| = 1), u ↓ M and u ↑ M are 
essentially the same sequence u by rearranging its indices in Zd. To explicitly specify the sampling matrix M
associated with a filter u, we shall adopt the notation u ! M. Under the new notation, a (d-dimensional dyadic) 
tight framelet filter bank {a; b1, . . . , bs} will be denoted more precisely as {a ! 2Id; b1 ! 2Id, . . . , bs ! 2Id}, since 
the sampling matrix is uniformly 2Id.

For 1 � p < ∞, lp(Zd) consists of all the sequences v : Zd → C satisfying ‖v‖p
lp(Zd) :=

∑
k∈Zd |v(k)|p < ∞. 

Similarly, v ∈ l∞(Zd) if ‖v‖l∞(Zd) := supk∈Zd |v(k)| < ∞. By l0(Zd) we denote the space of all finitely 
supported sequences on Zd.

A discrete framelet transform can be described using the subdivision operator and the transition operator. 
For a filter u ∈ l1(Zd) and a d × d integer matrix M, the subdivision operator Su,M : l∞(Zd) → l∞(Zd) and 
the transition operator Tu,M : l∞(Zd) → l∞(Zd) are defined to be

[Su,Mv](n) := | det(M)|
∑
k∈Zd

v(k)u(n− Mk), n ∈ Zd,

[Tu,Mv](n) := | det(M)|
∑
k∈Zd

v(k)u(k − Mn), n ∈ Zd,

for v ∈ l∞(Zd). Since u ∈ l1(Zd) and v ∈ l∞(Zd), we see that both Su,Mv and Tu,Mv are well-defined 
sequences in l∞(Zd). Define ΩM := [M−TZd] ∩ [0, 1)d. In terms of the Fourier series, for u, v ∈ l1(Zd), we 
have

Ŝu,Mv(ξ) = | det(M)|v̂(MTξ)û(ξ), T̂u,Mv(ξ) =
∑

ω∈ΩM

v̂(M−Tξ + 2πω)û(M−Tξ + 2πω). (2.1)

Define the flip-conjugate sequence u� of u by u�(k) := u(−k), k ∈ Zd, that is, û�(ξ) = û(ξ). Then Su,Mv =
| det(M)|(v ↑M) ∗ u and Tu,Mv = | det(M)|(v ∗ u�) ↓M, where v ∗ u :=

∑
k∈Zd v(k)u(· − k) is the convolution 

of v and u.
Let a, b1, . . . , bs ∈ l1(Zd) and let M, M1, . . . , Ms be d × d invertible integer matrices. For J ∈ N, 

we now describe a J-level (d-dimensional) discrete/fast framelet transform employing a filter bank 
{a ! M; b1 ! M1, . . . , bs ! Ms}. For a given data v0 ∈ l∞(Zd), the J-level discrete framelet decomposition (or 
forward transform) employing the filter bank {a ! M; b1 ! M1, . . . , bs ! Ms} is

vj := | det(M)|−1/2Ta,Mvj−1 and w�,j := | det(M�)|−1/2Tb�,M�
vj−1, � = 1, . . . , s, j = 1, . . . , J,

(2.2)

where vj are called sequences of low-pass coefficients and all w�,j are called sequences of high-pass coefficients 
of the input signal v0. The J-level discrete framelet reconstruction (or backward transform) employing the 
filter bank {a ! M; b1 ! M1, . . . , bs ! Ms} can be described by

v̊j−1 := | det(M)|−1/2Sa,Mv̊j +
s∑

�=1

| det(M�)|−1/2Sb�,M�
ẘ�,j , j = J, . . . , 1, (2.3)

where v̊0 is a reconstructed sequence on Zd. The perfect reconstruction property requires that the recon-
structed sequence v̊0 should be exactly the same as the original input data v0 if v̊J = vJ and ẘ�,j = w�,j

for j = 1, . . . , J and � = 1, . . . , s. See Fig. 2 for an illustration of a two-level fast framelet transform using a 
one-dimensional tight framelet filter bank {a ! 2; b1 ! 4, . . . , bs ! 4}.

Following [15, Theorem 2.1], we have the following result on the perfect reconstruction property of a filter 
bank {a ! M; b1 ! M1, . . . , bs ! Ms}.
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Theorem 1. Let a, b1, . . . , bs ∈ l1(Zd) and let M, M1, . . . , Ms be d × d invertible integer matrices. Then the 
following statements are equivalent to each other:

(i) For every J ∈ N, the J-level fast framelet transform employing the filter bank {a ! M; b1 ! M1, . . . , bs ! Ms}
has perfect reconstruction property.

(ii) The one-level discrete framelet transform employing the filter bank {a ! M; b1 ! M1, . . . , bs ! Ms} has per-
fect reconstruction property, that is, for all v ∈ l∞(Zd),

v = | det(M)|−1Sa,MTa,Mv + | det(M1)|−1Sb1,M1Tb1,M1v + · · · + | det(Ms)|−1Sbs,Ms
Tbs,Ms

v. (2.4)

(iii) (2.4) holds for all v ∈ l0(Zd).
(iv) The filter bank {a ! M; b1 ! M1, . . . , bs ! Ms} is a tight framelet filter bank with mixed sampling factors, 

that is, the following perfect reconstruction conditions hold:

|â(ξ)|2 + |b̂1(ξ)|2 + · · · + |b̂s(ξ)|2 = 1, a.e. ξ ∈ Rd (2.5)

and

χΩM(ω)â(ξ)â(ξ + 2πω) +
s∑

�=1

χΩM�
(ω)b̂�(ξ)b̂�(ξ + 2πω) = 0, (2.6)

for almost every ξ ∈ Rd and for all ω ∈ [ΩM ∪ (∪s
�=1ΩM�

)]\{0}, where ΩM := (M−TZd) ∩ [0, 1)d, 
ΩM�

:= (M−T
� Zd) ∩ [0, 1)d, and χE denotes the characteristic function of a set E ⊆ Rd such that 

χE(ω) = 1 if ω ∈ E and χE(ω) = 0 if ω /∈ E.

Proof. The equivalence between item (i) and item (ii) is obvious, since item (ii) is just item (i) with J = 1
and a J-level fast framelet transform recursively employs the one-level discrete framelet transform J times.

We now prove (ii) ⇐⇒ (iii). Since l0(Zd) ⊂ l∞(Zd), (ii)=⇒(iii) is trivial. We use a similar argument as in 
the proof of [15, Theorem 2.1] to prove (iii)=⇒(ii). For v ∈ l∞(Zd) and N ∈ N, we consider the truncated 
sequence

vN (k) :=
{
v(k), if ‖k‖ � N,

0, otherwise,
k ∈ Zd.

Clearly, vN ∈ l0(Zd) and limN→∞ vN (k) = v(k) for every k ∈ Zd. Since a, b1, . . . , bs ∈ l1(Zd), for every 
k ∈ Zd, it is not difficult to verify that

lim
N→∞

[Sa,MTa,MvN ](k) = [Sa,MTa,Mv](k) and

lim
N→∞

[Sb�,M�
Tb�,M�

vN ](k) = [Sb�,M�
Tb�,M�

v](k), � = 1, . . . , s.

By item (iii), (2.4) holds with v being replaced by vN . That is, for every k ∈ Zd, we have

vN (k) = |det(M)|−1[Sa,MTa,MvN ](k) + | det(M1)|−1[Sb1,M1Tb1,M1vN ](k) + · · ·
+ | det(Ms)|−1[Sbs,Ms

Tbs,Ms
vN ](k).

Taking N → ∞ in the above identity, we conclude that the above identity still holds if vN is replaced by v. 
Therefore, (2.4) holds for all v ∈ l∞(Zd). This proves (iii)=⇒(ii).

Let v ∈ l1(Zd). By (2.1), we see that the Fourier series of the sequence Sb�,M�
Tb�,M�

v is
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| det(M�)|
∑

ω�∈ΩM�

v̂(ξ + 2πω�)b̂�(ξ)b̂�(ξ + 2πω�).

Consequently, we conclude that (2.4) holds for all v ∈ l1(Zd) if and only if

v̂(ξ) =
∑

ω0∈ΩM

v̂(ξ + 2πω0)â(ξ)â(ξ + 2πω0) +
s∑

�=1

∑
ω�∈ΩM�

v̂(ξ + 2πω�)b̂�(ξ)b̂�(ξ + 2πω�)

=
∑
ω∈Ω

v̂(ξ + 2πω)
(
χΩM(ω)â(ξ)â(ξ + 2πω) +

s∑
�=1

χΩM�
(ω)b̂�(ξ)b̂�(ξ + 2πω)

)
,

where Ω := ΩM ∪ (∪s
�=1ΩM�

), which can be equivalently expressed as

∑
ω∈Ω

v̂(ξ + 2πω)ûω(ξ) = 0, (2.7)

where ûω, ω ∈ Ω are 2πZd-periodic functions defined by û0(ξ) := |â(ξ)|2 + |b̂1(ξ)|2 + · · · + |b̂s(ξ)|2 − 1 and

ûω(ξ) := χΩM(ω)â(ξ)â(ξ + 2πω) +
s∑

�=1

χΩM�
(ω)b̂�(ξ)b̂�(ξ + 2πω), ω ∈ Ω\{0}.

If item (iv) holds, then ûω = 0 for all ω ∈ Ω and thus, (2.7) trivially holds for all v ∈ l0(Zd). This proves 
(iv)=⇒(iii). We now prove (iii)=⇒(iv). Since we proved (iii)=⇒(ii) and l1(Zd) ⊂ l∞(Zd), it follows from item 
(iii) that (2.7) holds for all v ∈ l1(Zd). We observe that the shortest distance, denoted by ε, from the point 
0 to any point in the set (Ω\{0}) +Zd must be positive. Let ξ0 ∈ (−π, π)d be arbitrarily fixed. Then we can 
take ε > 0 further smaller so that (ξ0 + [−ε, ε]d) ⊆ (−π, π)d. Let v̂ be any 2πZd-periodic C∞ function such 
that the support of v̂ inside the fundamental domain (−π, π]d is contained inside Eε := ξ0 + (−ε/π, ε/π)d. 
Then v ∈ l1(Zd) and v̂(ξ+2πω) = 0 for all ξ ∈ Eε and ω ∈ Ω\{0}. Consequently, (2.7) implies v̂(ξ)û0(ξ) = 0
for all ξ ∈ Eε. In particular, û0 must vanish in a neighborhood of ξ0. Since ξ0 ∈ (−π, π)d is arbitrarily chosen, 
we conclude that û0(ξ) = 0 a.e. ξ ∈ [−π, π)d. Since û0 is 2πZd-periodic, this proves (2.5). For a general 
ω̊ ∈ Ω, (2.7) is equivalent to 

∑
ω∈Ω v̂(ξ + 2π(ω− ω̊))ûω(ξ− 2πω̊) = 0. By the same argument, we must have 

ûω̊ = 0. This proves (2.6). �
For the special case that M1 = · · · = Ms = M and all a, b1, . . . , bs ∈ l0(Zd) are finitely supported, 

Theorem 1 reduces to [15, Theorem 2.1]. Though here we largely followed the idea of the proof of [15, 
Theorem 2.1], the key step (iii) =⇒ (iv) is proved in [15, Theorem 2.1] in the spatial domain, while here we 
proved the claim in the frequency domain. This argument allows us to deal with filters a, b1, . . . , bs ∈ l1(Zd)
instead of finitely supported filters in [15, Theorem 2.1]. The condition in (2.6) for a tight framelet filter 
bank {a ! M; b1 ! M1, . . . , bs ! Ms} is also much more complicated than its counterpart in [15, Theorem 2.1]
with M1 = · · · = Ms = M. Note that if ΩM�

is chosen to be another complete set of representatives of 
distinct cosets in [M−T

� Zd]/Zd instead of the particular choice [M−T
� Zd] ∩ [0, 1)d, then for all � = 1, . . . , s, 

χΩM�
in (2.6) have to be replaced by χM−T

� Zd .

2.2. Discrete affine systems of tight framelet filter banks with mixed sampling factors

To understand the performance and properties of the J-level fast framelet transform using a tight framelet 
filter bank {a ! M; b1 ! M1, . . . , bs ! Ms}, as pointed out in [15], it is very important to look at the J-level 
discrete affine systems associated with {a ! M; b1 ! M1, . . . , bs ! Ms}.
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We now generalize the discrete affine systems in [15, Section 4.3] to a d-dimensional tight framelet 
filter bank {a ! M; b1 ! M1, . . . , bs ! Ms} with mixed sampling factors. Let a, b1, . . . , bs ∈ l1(Zd). Note that 
l1(Zd) ⊆ l2(Zd) and l2(Zd) is a Hilbert space equipped with the inner product 〈u, v〉 :=

∑
k∈Zd u(k)v(k) for 

u, v ∈ l2(Zd). Following [15], we define the multilevel filters aj and b�,j with j ∈ N and � = 1, . . . , s by

âj(ξ) := â(ξ)â(MTξ) · · · â((MT)j−2ξ)â((MT)j−1ξ) (2.8)

and

b̂�,j(ξ) := âj−1(ξ)b̂�((MT)j−1ξ) = â(ξ)â(MTξ) · · · â((MT)j−2ξ)b̂�((MT)j−1ξ). (2.9)

In particular, a1 = a and b�,1 = b�. We shall also use the convention a0 = δ, where δ is the Dirac/Kronecker 
sequence on Zd given by

δ(0) = 1 and δ(k) = 0, ∀ k ∈ Zd\{0}.

Since a, b1, . . . , bs ∈ l1(Zd), it is straightforward to see that all aj , b�,j are well-defined filters in l1(Zd) ⊆
l2(Zd). For j ∈ N and k ∈ Zd, we define

aj;k := | det(M)|j/2aj(· − Mjk), b�,j;k := | det(M)|(j−1)/2| det(M�)|1/2b�,j(· − Mj−1M�k). (2.10)

The J-level discrete affine system associated with the filter bank {a ! M; b1 ! M1, . . . , bs ! Ms} is defined by

DASJ ({a ! M; b1 ! M1, . . . , bs ! Ms})
:= {aJ;k : k ∈ Zd} ∪ {b�,j;k : k ∈ Zd, � = 1, . . . , s, j = 1, . . . , J}. (2.11)

By a similar argument as in [15, Section 4.3] (also see Theorem 2 below), under the framework of the 
Hilbert space l2(Zd), we see that the J-level fast framelet transform using the tight framelet filter bank 
{a ! M; b1 ! M1, . . . , bs ! Ms} is exactly to compute the following representation:

v =
∑

u∈DASJ ({a ! M;b1 ! M1,...,bs ! Ms})
〈v, u〉u =

∑
k∈Zd

〈v, aJ;k〉aJ;k +
J∑

j=1

s∑
�=1

∑
k∈Zd

〈v, b�,j;k〉b�,j;k, ∀ v ∈ l2(Zd),

(2.12)

where the series converges unconditionally in l2(Zd). More precisely, as we shall see later, vJ (k) = 〈v0, aJ;k〉
and w�,j(k) = 〈v0, b�,j;k〉 for all j = 1, . . . , J and k ∈ Zd.

Following the general theory developed in [15], we have the following result.

Theorem 2. Let a, b1, . . . , bs ∈ l1(Zd) and M, M1, . . . , Ms be d ×d invertible integer matrices. For J ∈ N, define 
DASJ({a ! M; b1 ! M1, . . . , bs ! Ms}) as in (2.11) with aj and b�,j being given in (2.8) and (2.9), respectively. 
Then the following statements are equivalent:

(1) {a ! M; b1 ! M1, . . . , bs ! Ms} is a tight framelet filter bank with mixed sampling factors.
(2) The following identity holds:

v =
∑
k∈Zd

〈v, a1;k〉a1;k +
s∑

�=1

∑
k∈Zd

〈v, b�,1;k〉b�,1;k, ∀ v ∈ l2(Zd). (2.13)
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(3) DAS1({a ! M; b1 ! M1, . . . , bs ! Ms}) is a (normalized) tight frame for l2(Zd), that is,

‖v‖2
l2(Zd) =

∑
k∈Zd

|〈v, a1;k〉|2 +
s∑

�=1

∑
k∈Zd

|〈v, b�,1;k〉|2, ∀ v ∈ l2(Zd). (2.14)

(4) For every j ∈ N, the following identity holds:

∑
k∈Zd

〈v, aj−1;k〉aj−1;k =
∑
k∈Zd

〈v, aj;k〉aj;k +
s∑

�=1

∑
k∈Zd

〈v, b�,j;k〉b�,j;k, ∀ v ∈ l2(Zd), (2.15)

where by convention a0 := δ and a0;k := δ(· − k) for k ∈ Zd.
(5) For every J ∈ N, the identity in (2.12) holds.
(6) For every J ∈ N, DASJ({a ! M; b1 ! M1, . . . , bs ! Ms}) is a (normalized) tight frame for l2(Zd), that is,

‖v‖2
l2(Zd) =

∑
k∈Zd

|〈v, aJ;k〉|2 +
J∑

j=1

s∑
�=1

∑
k∈Zd

|〈v, b�,j;k〉|2, ∀ v ∈ l2(Zd). (2.16)

Proof. Plugging v = δ(· −n) with all n ∈ Zd into (2.13), we observe by direct calculation that the resulting 
equations in (2.13) with v = δ(· − n) are simply the spatial domain version of the conditions in (2.5) and 
(2.6) in the frequency domain. Hence, (1) ⇐⇒ (2).

Note that (2.13) holds if and only if

〈v, w〉 =
∑
k∈Zd

〈v, a1;k〉〈a1;k, w〉 +
s∑

�=1

∑
k∈Zd

〈v, b�,1;k〉〈b�,1;k, w〉, ∀ v, w ∈ l2(Zd). (2.17)

(2)=⇒(3) is trivial by plugging w = v into (2.17). For any Hilbert space H over the complex field C with 
‖h‖2

H := 〈h, h〉, the following well-known polarization identity holds:

〈v, w〉 = 1
4
(
‖v + w‖2

H − ‖v − w‖2
H + i‖v + iw‖2

H − i‖v − iw‖2
H
)
, ∀ v, w ∈ H.

Applying the above polarization identity with H = l2(Zd) and H = C, we deduce directly from (2.14) in 
item (3) that (2.17) holds. Thus, (3)=⇒(2) and we proved (2) ⇐⇒ (3).

(4)=⇒(2) is obvious since it follows from the convention a0 = δ that 
∑

k∈Zd〈v, a0;k〉a0;k =
∑

k∈Zd v(k)δ(· −
k) = v. We now prove (2)=⇒(4). By the definition of b�,j in (2.9) and b�,1 = b�,

b�,j = aj−1 ∗ (b� ↑Mj−1) = aj−1 ∗ (b�,1 ↑Mj−1)

=
∑
n∈Zd

aj−1(· − n)(b�,1 ↑Mj−1)(n) =
∑
m∈Zd

aj−1(· − Mj−1m)b�,1(m).

Therefore, by the definition of b�,j;k in (2.10),

b�,j;k = | det(M)|(j−1)/2| det(M�)|1/2b�,j(· − Mj−1M�k)

= | det(M)|(j−1)/2| det(M�)|1/2
∑
m∈Zd

aj−1(· − Mj−1M�k − Mj−1m)b�,1(m)

= | det(M)|(j−1)/2| det(M�)|1/2
∑
m∈Zd

aj−1(· − Mj−1m)b�,1(m− M�k)

=
∑

aj−1;mb�,1;k(m).

m∈Zd
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Consequently, we proved

〈v, b�,j;k〉 =
∑
m∈Zd

〈v, aj−1;m〉b�,1;k(m) = 〈〈v, aj−1;·〉, b�,1;k(·)〉. (2.18)

We now deduce from the above two identities that

∑
k∈Zd

〈v, b�,j;k〉b�,j;k =
∑
m∈Zd

aj−1;m

⎛⎝∑
k∈Zd

〈〈v, aj−1;·〉, b�,1;k〉b�,1;k(m)

⎞⎠ .

The same argument can be applied to aj;k and the above identity still holds by replacing b�,j;k and b�,1;k
with aj;k and a1;k, respectively. Therefore,

∑
k∈Zd

〈v, aj;k〉aj;k +
s∑

�=1

∑
k∈Zd

〈v, b�,j;k〉b�,j;k

=
∑
m∈Zd

aj−1;m

⎛⎝∑
k∈Zd

〈〈v, aj−1;·〉, a1;k〉a1;k(m) +
s∑

�=1

∑
k∈Zd

〈〈v, aj−1;·〉, b�,1;k〉b�,1;k(m)

⎞⎠
=

∑
m∈Zd

〈v, aj−1;m〉aj−1;m,

where we used (2.13), i.e., item (2), in the last identity. This proves (2)=⇒(4).
(4)=⇒(5) is obvious by summing all (2.15) with j = 1, . . . , J together. Conversely, considering the 

differences between J = j and J = j− 1 in (2.12), we see that (5)=⇒(4). The equivalence between item (5) 
and item (6) is straightforward and is similar to the equivalence between item (2) and item (3). �

Theorem 2 with M1 = · · · = Ms = M and a, b1, . . . , bs ∈ l0(Zd) has been discussed in [15, Section 4.3] but 
without explicitly stating it as a theorem in [15]. Though we used the ideas from [15] to prove Theorem 2, 
the key step (2)=⇒(4) here is new.

We now show that the coefficients in the representation in (2.12) using a J-level discrete affine system can 
be exactly computed through the J-level fast framelet decomposition in (2.2). Since Tu,Mv = | det(M)|(v ∗
u�) ↓M and âj−1(ξ) = â(ξ) · · · â((MT)j−2ξ), by [15, Lemma 4.3], we have

〈v, aj−1;k〉 = | det(M)|(j−1)/2〈v, aj−1(· − Mj−1k)〉 = | det(M)|(1−j)/2[Taj−1,Mj−1v](k)

= | det(M)|(1−j)/2[T j−1
a,M v](k) = vj−1(k),

where vj−1 is exactly the same sequence as obtained in the fast framelet decomposition in (2.2) with v0 := v. 
Similarly, by (2.18) and the above identity, we have

〈v, b�,j;k〉 = 〈〈v, aj−1;·〉, b�,1;k〉 = | det(M�)|1/2〈vj−1, b�(· − M�k)〉

= | det(M�)|1/2
∑
m∈Zd

vj−1(m)b�(m− M�k) = |det(M�)|−1/2[Tb�,M�
vj−1](k) = w�,j(k).

This establishes the connection between the representation in (2.12) under the J-level discrete affine system 
and the J-level fast/discrete framelet transform in (2.2) and (2.3).
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2.3. Connections to tight framelets in L2(Rd)

Following the general theory on frequency-based framelets in [13,14], we now discuss the natural connec-
tions of a tight framelet filter bank {a ! M; b1 ! M1, . . . , bs ! Ms} with a tight framelet in L2(Rd).

For a function f : Rd → C and a d × d real-valued matrix U , following [14], we shall adopt the following 
notation:

fU ;k,n(x) = f[[U ;k,n]](x) = [[U ; k, n]]f(x) := | det(U)|1/2e−in·Uxf(Ux− k), x, k, n ∈ Rd.

In particular, we define fU ;k := fU ;k,0 = | detU |1/2f(U · −k). For f ∈ L1(Rd), its Fourier transform is 
defined to be f̂(ξ) :=

∫
Rd f(x)e−ix·ξdx for ξ ∈ Rd. If U is invertible, then f̂U ;k = f̂U−T;0,k.

The following result is based on the general theory developed in [13,14] on frequency-based framelets.

Theorem 3. Let a, b1, . . . , bs ∈ l1(Zd) and M, M1, . . . , Ms be d × d invertible integer matrices. Suppose that 
all the eigenvalues of M are greater than one in modulus and there exist positive numbers C and τ such that

|1 − â(ξ)| � C‖ξ‖τ for all ξ ∈ [−π, π]d. (2.19)

Define

φ̂(ξ) :=
∞∏
j=1

â((MT)−jξ) and ψ̂�(ξ) := b̂�(M−Tξ)φ̂(M−Tξ), ξ ∈ Rd, � = 1, . . . , s. (2.20)

If {a ! M; b1 ! M1, . . . , bs ! Ms} is a tight framelet filter bank, then {φ ! M; ψ1 ! M1, . . . , ψs ! Ms} is a tight 
framelet in L2(Rd), that is, φ, ψ1, . . . , ψs ∈ L2(Rd) and AS0({φ ! M; ψ1 ! M1, . . . , ψs ! Ms}) is a (normalized) 
tight frame for L2(Rd):

‖f‖2
L2(Rd) =

∑
k∈Zd

|〈f, φ(· − k)〉|2 +
∞∑
j=0

s∑
�=1

∑
k∈Zd

|〈f, | det(M−1M�)|1/2ψ�
Mj ;M−1M�k

〉|2, (2.21)

for all f ∈ L2(Rd), where

AS0({φ ! M;ψ1 ! M1, . . . , ψ
s ! Ms})

:= {φ(· − k) : k ∈ Zd} ∪ {|det(M−1M�)|1/2ψ�
Mj ;M−1M�k

: k ∈ Zd, � = 1, . . . , s, j ∈ N ∪ {0}}. (2.22)

The converse direction also holds provided in addition that 
∑

k∈Zd |φ̂(ξ+2πk)|2 �= 0 for almost every ξ ∈ Rd.

Proof. Though the proof here essentially follows the arguments and general theory developed in [13,14], for 
the convenience of the reader and due to the importance of this result, we provide a self-contained proof 
here.

Define N := M−T and N� := M−T
� . By our assumption on M and â, we see that φ̂ is a well-defined bounded 

function in L∞(Rd) and limj→+∞ φ̂(Njξ) = 1 for all ξ ∈ Rd. Define

D := {f ∈ L2(Rd) : f̂ has compact support and f̂ ∈ C∞(Rd)}.

By [14, Lemma 10], for f ∈ D, we have

∑
k∈Zd

|〈f̂ , φ̂Nj ;0,k〉|2 = (2π)d
∫ ∑

k∈Zd

f̂(ξ)f̂(ξ + 2πN−jk) φ̂(Njξ)φ̂(Njξ + 2πk)dξ. (2.23)

Rd
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Since f̂ has compact support and all the eigenvalues of N−1 are greater than 1 in modulus, for sufficiently 

large j, f̂(ξ)f̂(ξ + 2πN−jk) = 0 for all ξ ∈ Rd and k ∈ Zd\{0}. Hence, for sufficiently large j ∈ N, (2.23)
becomes ∑

k∈Zd

|〈f̂ , φ̂Nj ;0,k〉|2 = (2π)d
∫
Rd

|f̂(ξ)|2|φ̂(Njξ)|2dξ.

Since φ̂ is bounded, we have |f̂(ξ)|2|φ̂(Njξ)|2 � ‖φ̂‖2
L∞(Rd)|f̂(ξ)|2. By f ∈ L2(Rd), we have f̂ ∈ L2(Rd) and 

thus, |f̂ |2 ∈ L1(Rd). By Lebesgue Dominated Convergence Theorem and limj→+∞ φ̂(Njξ) = 1, we have

lim
j→+∞

∑
k∈Zd

|〈f̂ , φ̂Nj ;0,k〉|2 = (2π)d
∫
Rd

|f̂(ξ)|2 lim
j→+∞

|φ̂(Njξ)|2dξ = (2π)d‖f̂‖2
L2(Rd), f ∈ D. (2.24)

Define η� := ψ�(M−1M�·). Then ψ�(· − M−1M�k) = η�(M−1
� M · −k) and η̂�(ξ) = | det(M−1M�)|−1ψ̂�

(N−1N�ξ). By [14, Lemma 10], for f ∈ D, we have

| det(M−1M�)|2
∑
k∈Zd

|〈f̂ , η̂�N−1
� N;0,k〉|2

= (2π)d| det(M−1M�)|2
∫
Rd

f̂(ξ)f̂(ξ + 2πN−1N�k) η̂�(N−1
� Nξ)η̂�(N−1

� Nξ + 2πk)dξ

= (2π)d
∫
Rd

∑
k∈Zd

f̂(ξ)f̂(ξ + 2πN−1N�k)ψ̂�(ξ)ψ̂�(ξ + 2πN−1N�k)dξ

= (2π)d
∫
Rd

∑
k∈Zd

f̂(ξ)f̂(ξ + 2πN−1N�k)b̂�(Nξ)b̂�(Nξ + 2πN�k)φ̂(Nξ)φ̂(Nξ + 2πN�k)dξ

= (2π)d
∫
Rd

f̂(ξ)φ̂(Nξ)
∑

ω�∈Ω�

b̂�(Nξ)b̂�(Nξ + 2πω�)
∑
k∈Zd

f̂(ξ + 2πN−1ω� + 2πN−1k)φ̂(Nξ + 2πω� + 2πk)dξ,

where we used (2.20) in the second-to-last identity and the fact that Zd = MT
� Ω� + MT

� Z
d. Similarly, by 

(2.23) with j = 0 and φ̂(ξ) = â(Nξ)φ̂(Nξ) (which is a direct consequence of the first definition in (2.20)), we 
have∑
k∈Zd

|〈f̂ , φ̂Id;0,k〉|2

= (2π)d
∫
Rd

∑
k∈Zd

f̂(ξ)f̂(ξ + 2πk)â(Nξ)â(Nξ + 2πNk)φ̂(Nξ)φ̂(Nξ + 2πNk)dξ

= (2π)d
∫
Rd

f̂(ξ)φ̂(Nξ)
∑

ω0∈ΩM

â(Nξ)â(Nξ + 2πω0)
∑
k∈Zd

f̂(ξ + 2πN−1ω0 + 2πN−1k)φ̂(Nξ + 2πω0 + 2πk)dξ.

Consequently,

∑
k∈Zd

|〈f̂ , φ̂Id;0,k〉|2 +
s∑

�=1

| det(M−1M�)|2
∑
k∈Zd

|〈f̂ , η̂�N−1
� N;0,k〉|2

= (2π)d
∫

f̂(ξ)φ̂(Nξ)
∑
ω∈Ω

∑
k∈Zd

f̂(ξ + 2πN−1ω + 2πN−1k)φ̂(Nξ + 2πω + 2πk)

Rd
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×
(
χΩM(ω)â(Nξ)â(Nξ + 2πω) +

s∑
�=1

χΩM�
(ω)b̂�(Nξ)b̂�(Nξ + 2πω)

)
dξ, (2.25)

where Ω := ΩM ∪ (∪s
�=1ΩM�

). Suppose that {a ! M; b1 ! M1, . . . , bs ! Ms} is a tight framelet filter bank. Then 
(2.5) and (2.6) are satisfied and consequently, we deduce from (2.25) that

∑
k∈Zd

|〈f̂ , φ̂Id;0,k〉|2 +
s∑

�=1

| det(M−1M�)|2
∑
k∈Zd

|〈f̂ , η̂�N−1
� N;0,k〉|2

= (2π)d
∫
Rd

f̂(ξ)φ̂(Nξ)
∑
k∈Zd

f̂(ξ + 2πN−1k)φ̂(Nξ + 2πk)dξ.

Applying (2.23) with j = 1 to the right-hand side of the above identity, we conclude that

∑
k∈Zd

|〈f̂ , φ̂Id;0,k〉|2 +
s∑

�=1

| det(M−1M�)|2
∑
k∈Zd

|〈f̂ , η̂�N−1
� N;0,k〉|2 =

∑
k∈Zd

|〈f̂ , φ̂N;0,k〉|2, f ∈ D. (2.26)

By a simple scaling technique 〈f̂N−j ;0, ̂g〉 = 〈f̂ , ̂gNj ;0〉, replacing f̂ in (2.26) by f̂N−j ;0, we conclude that

∑
k∈Zd

|〈f̂ , φ̂Nj ;0,k〉|2 +
s∑

�=1

| det(M−1M�)|2
∑
k∈Zd

|〈f̂ , η̂�N−1
� Nj+1;0,k〉|2 =

∑
k∈Zd

|〈f̂ , φ̂Nj+1;0,k〉|2

for all j ∈ Z and f ∈ D. For any m, n ∈ Z with m < n, adding the above identities with j = m, . . . , n − 1, 
we have

∑
k∈Zd

|〈f̂ , φ̂Nm;0,k〉|2 +
n−1∑
j=m

s∑
�=1

| det(M−1M�)|2
∑
k∈Zd

|〈f̂ , η̂�N−1
� Nj+1;0,k〉|2 =

∑
k∈Zd

|〈f̂ , φ̂Nn;0,k〉|2. (2.27)

Taking n → ∞ in (2.27), we conclude from (2.24) and the above identity (2.27) that for every m ∈ Z,

∑
k∈Zd

|〈f̂ , φ̂Nm;0,k〉|2 +
∞∑

j=m

s∑
�=1

| det(M−1M�)|2
∑
k∈Zd

|〈f̂ , η̂�N−1
� Nj+1;0,k〉|2 = (2π)d‖f̂‖2

L2(Rd) (2.28)

for all f ∈ D. In particular, the above identity (2.28) implies |〈f̂ , φ̂Nm;0,0〉|2 � (2π)d‖f̂‖2
L2(Rd) for all 

f ∈ D. Since D is dense in L2(Rd), this inequality implies φ̂ ∈ L2(Rd). By the same argument, we have 
η̂1, . . . , η̂s ∈ L2(Rd). This proves that φ, η1, . . . , ηs are well-defined functions in L2(Rd). Consequently, we 
proved φ, ψ1, . . . , ψs ∈ L2(Rd). Since D is dense in L2(Rd), we also see that (2.28) holds for all f ∈ L2(Rd)
and m ∈ Z. By η� = ψ�(M−1M�·), the Fourier transform of ψ�

Mj ;M−1M�k
is ψ̂�

Nj ;0,M−1M�k
which is further 

equal to

ψ̂�
Nj ;0,M−1M�k

= | det(N)|j/2e−i(M−1M�k)·Njξψ̂�(Njξ)

= | det(N)|j/2| det(M−1M�)|e−ik·N−1
� Nj+1ξη̂�(N−1

� Nj+1ξ) = | det(M−1M�)|1/2η̂�N−1
� Nj+1;0,k.

By Plancherel’s Theorem, we deduce from (2.28) with m = 0 that (2.21) must hold for all f ∈ L2(Rd).
Conversely, if (2.21) holds, then (2.28) must hold with m = 0. By a simple scaling technique, (2.28) must 

hold for all m ∈ Z. Considering the difference between m = 0 and m = 1 in (2.28), we see that (2.26) must 
hold for all f ∈ L2(Rd). By (2.25) and (2.23) with j = 1, we see that (2.26) is equivalent to
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∫
Rd

f̂(ξ)φ̂(Nξ)
∑
ω∈Ω

∑
k∈Zd

f̂(ξ + 2πN−1ω + 2πN−1k)φ̂(Nξ + 2πω + 2πk)

×
(
χΩM(ω)â(Nξ)â(Nξ + 2πω) +

s∑
�=1

χΩM�
(ω)b̂�(Nξ)b̂�(Nξ + 2πω) − δ(ω)

)
dξ = 0. (2.29)

By a similar argument as in [13, Lemma 5] (also see the argument of (2.7)=⇒(2.5) in the proof of Theorem 1), 
we can conclude that (2.29) holds if and only if

φ̂(ξ)φ̂(ξ + 2πω + 2πk)
(
χΩM(ω)â(ξ)â(ξ + 2πω) +

s∑
�=1

χΩM�
(ω)b̂�(ξ)b̂�(ξ + 2πω) − δ(ω)

)
= 0, (2.30)

for almost every ξ ∈ Rd and for all ω ∈ ΩM ∪ (∪s
�=1ΩM�

) and k ∈ Zd. If 
∑

k∈Zd |φ̂(ξ + 2πk)|2 �= 0 for almost 
every ξ ∈ Rd, then it is easy to deduce that (2.30) is equivalent to (2.5) and (2.6). This proves the converse 
direction. �

A filter bank {a ! M; b1 ! M1, . . . , bs ! Ms} satisfying (2.30) is called a generalized tight framelet filter bank
in [14] (for the case M1 = · · · = Ms = M). In fact, under the condition (2.19), the above proof shows 
that {φ ! M; ψ1 ! M1, . . . , ψs ! Ms} is a tight framelet in L2(Rd) if and only if {a ! M; b1 ! M1, . . . , bs ! Ms} is a 
generalized tight framelet filter bank. Since M−1M�Z

d = Zd may not hold any more for all � = 1, . . . , s, 
the system AS0({φ ! M; ψ1 ! M1, . . . , ψs ! Ms}) in (2.22) is not covered by the traditional theory of wavelet 
analysis.

3. Directional tensor product complex tight framelets with low redundancy

In this section we first briefly recall the directional tensor product complex tight framelets from [15,20]. 
Then we shall briefly explain the directionality of tensor product complex tight framelets TP-CTFm and 
our particular choice of TP-CTF6. Built on the results on tight framelet filter banks with mixed sampling 
factors in Section 2, we shall provide the details on our proposed directional tensor product complex tight 
framelet filter bank TP-CTF↓

6 with low redundancy rate as well as the more general TP-CTF↓
m with m ≥ 3.

3.1. Tensor product complex tight framelets and their redundancy rates

For cL < cR and positive numbers εL, εR satisfying εL + εR � cR − cL, we define a bump function 
χ[cL,cR];εL,εR on R [12,15,20] by

χ[cL,cR];εL,εR(ξ) :=

⎧⎪⎪⎨⎪⎪⎩
0, ξ � cL − εL or ξ ≥ cR + εR,

cos
(π(cL+εL−ξ)

4εL

)
, cL − εL < ξ < cL + εL,

1, cL + εL � ξ � cR − εR,

cos
(π(ξ−cR+εR)

4εR

)
, cR − εR < ξ < cR + εR.

(3.1)

Note that χ[cL,cR];εL,εR is a continuous function supported on [cL − εL, cR + εR].
Let s ∈ N and 0 < c1 < c2 < · · · < cs+1 := π and ε0, ε1, . . . , εs+1 be positive real numbers satisfying

ε0 + ε1 � c1 � π
2 − ε1 and ε� + ε�+1 � c�+1 − c� � π − ε� − ε�+1, ∀ � = 1, . . . , s.

A real-valued low-pass filter a and 2s complex-valued high-pass filters b+1 , . . . , b+s , b
−
1 , . . . , b

−
s are defined 

through their 2π-periodic Fourier series on the basic interval [−π, π) as follows:
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â := χ[−c1,c1];ε1,ε1 , b̂+� := χ[c�,c�+1];ε�,ε�+1 , b̂−� := b̂+� (−·), � = 1, . . . , s. (3.2)

Note that different notations bp� and bn� instead of the above notations b+� and b−� are used in [15,20]. Then 
CTF2s+1 := {a; b+1 , . . . , b+s , b−1 , . . . , b−s } is a (one-dimensional dyadic) tight framelet filter bank. The tensor 
product complex tight framelet filter bank TP-CTF2s+1 for dimension d is simply

TP-CTF2s+1 := ⊗d CTF2s+1 = ⊗d{a; b+1 , . . . , b+s , b−1 , . . . , b−s }.

We can write TP-CTF2s+1 = {⊗da; TP-CTF -HP2s+1} with TP-CTF -HP2s+1 := TP-CTF2s+1 \{⊗da}. 
This tensor product tight framelet filter bank TP-CTF2s+1 has one real-valued low-pass filter ⊗da and 
(2s + 1)d − 1 complex-valued high-pass filters in TP-CTF -HP2s+1. This family of tensor product complex 
tight framelets has been introduced in [15].

To further improve the directionality of TP-CTF2s+1, another closely related family of tensor 
product complex tight framelet filter banks TP-CTF2s+2 has been introduced in [20]. Define filters 
a, b+1 , . . . , b

+
s , b

−
1 , . . . , b

−
s as in (3.2). Define two auxiliary complex-valued filters a+, a− through their 

2π-periodic Fourier series by

â+ := χ[0,c1];ε0,ε1 , â− := â+(−·). (3.3)

Then CTF2s+2 := {a+, a−; b+1 , . . . , b+s , b
−
1 , . . . , b

−
s } is also a (one-dimensional dyadic) tight framelet filter 

bank. Now the tensor product complex tight framelet filter bank TP-CTF2s+2 for dimension d is defined to 
be

TP-CTF2s+2 := {⊗da; TP-CTF -HP2s+2},

where TP-CTF -HP2s+2 consists of total (2s + 2)d − 2d complex-valued high-pass filters given by(
⊗d {a+, a−; b+1 , . . . , b+s , b

−
1 , . . . , b

−
s }

)
\
(
⊗d {a+, a−}

)
.

The sampling matrices/factors for all tensor product complex tight framelet filter banks TP-CTFm with 
m ≥ 3 are 2Id. See [15,19,20,33] for detailed discussions on tensor product complex tight framelets and their 
applications to image processing.

We now discuss the redundancy rates of TP-CTFm with m ≥ 3. Note that b̂−� = b̂+� (−·) is equivalent to 

b−� = b+� , that is, b−� (k) = b+� (k) for all k ∈ Z. Therefore, by the definitions in (3.2) and (3.3), we can always 
rewrite the tight framelet filter bank TP-CTFm as

TP-CTFm = {⊗da;u, u with u ∈ TP-CTF -CHPm}, (3.4)

where TP-CTF -CHPm is a subset of TP-CTF -HPm satisfying TP-CTF -HPm = {u, u : u ∈ TP-CTF -
CHPm}. Note that TP-CTF -CHPm has exactly nm filters, where nm := md−1

2 for odd integers m and 

nm := md−2d

2 for even integers m. For a complex-valued filter u : Zd → C, we can uniquely write u =
Re(u) + i Im(u), where Re(u) and Im(u) are two real-valued filters defined by Re(u)(k) := Re(u(k)) and 
Im(u)(k) := Im(u(k)) for all k ∈ Zd. Due to the identity in (3.4), we observe that the complex-valued tight 
framelet filter bank TP-CTFm leads to the following real-valued tight framelet filter bank:

{⊗da} ∪ {
√

2Re(u),
√

2 Im(u) : u ∈ TP-CTF -CHPm}, (3.5)

which has one real-valued low-pass filter and 2nm real-valued high-pass filters. Therefore, since the sampling 
matrices are 2Id with determinant 2d, the redundancy rate of TP-CTFm in dimension d is no more than
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2nm

2d
∞∑
j=0

1
2dj = 2nm

2d − 1 =
{

md−1
2d−1 , if m is an odd integer,
md−2d

2d−1 , if m is an even integer.

3.2. Directionality of tensor product complex tight framelets

In this subsection we first address directionality of tensor product complex tight framelets TP-CTFm

with m ≥ 3. Then we shall discuss the differences of TP-CTFm, in comparison with other known directional 
representation systems such as discrete cosine transform (DCT), curvelets, shearlets, and the dual tree 
complex wavelet transform (DT-CWT). We shall also explain why the tensor product complex tight framelet 
TP-CTF6 is of particular interest to us for the purpose of image and video processing.

To effectively capture edge (and other) singularities, directionality of a representation system is claimed 
to be very important for many multidimensional applications such as image and video processing [1,8,10,
11,14,22–24,31,34] and many references therein. A widely known directional representation system is the 
discrete cosine transform (DCT) which employs the directional cosine wave-like elements with different 
frequencies. The DCT is known to be effective for handling textures in an image but it is often incapable 
of capturing the edge singularities in an image, mainly because all the directional cosine elements in DCT
are globally supported (i.e., lack spatial localization).

All the DCT, TP-CTFm, and DT-CWT employ tensor product to build d-dimensional representation 
systems. Thus, their associated transforms are separable and have simple efficient algorithms which can be 
easily implemented through filter banks. As discussed in [20, Section 6.2], the underlying mechanism for 
TP-CTFm and DT-CWT to have directionality is quite different in nature to nonseparable representation 
systems such as curvelets and shearlets. The directionality of the complex-valued TP-CTFm and DT-CWT
is in fact achieved by combining some ideas from both wavelets and the DCT. For the convenience of the 
reader, in the following we briefly recall the argument from [20, Section 6.2] with some added information 
to explain the directionality of TP-CTFm and DT-CWT in dimension two. For simplicity, we only discuss 
complex-valued functions ψ : R2 → C, which are the generators in TP-CTFm and DT-CWT (see Section 2); 
the same argument can be applied to high-pass filters b : Z2 → C as well. Since ψ is obtained by tensor 
product as ψ = ψ1 ⊗ ψ2, we have ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2(ξ2). Due to the frequency separation property of 
TP-CTFm and DT-CWT (see Fig. 3 and Section 3.3), we see that

ψ̂1(ξ) = χ[ζ1−c1,ζ1+c1],ε1,ε1 and ψ̂2(ξ) = χ[ζ2−c2,ζ2+c2],ε2,ε2 (3.6)

for some ζ1, ζ2 ∈ R and c1, c2, ε1, ε2 > 0. In other words, most energy of ψ̂ lies inside the rectangle [ζ1 − c1,

ζ1 + c1] × [ζ2 − c2, ζ2 + c2] whose center is the point (ζ1, ζ2)T. Quite often c1 ≈ c2 by design. The relations 
in (3.6) only hold approximately for the DT-CWT. Define

g(ξ1, ξ2) = χ[−c1,c1],ε1,ε1(ξ1)χ[−c2,c2],ε2,ε2(ξ2), ξ1, ξ2 ∈ R

and let f denote its inverse Fourier transform, that is, f̂ = g. Noting that g(−ξ) = g(ξ), we see that f is a 
real-valued tensor product function, which is almost isotropic (due to c1 ≈ c2) and concentrates around the 
origin. Define a vector ζ := (ζ1, ζ2)T which is the mass center of the function ψ̂. Then ψ̂(ξ) = g(ξ − ζ) =
f̂(ξ − ζ) for all ξ ∈ R2, from which we conclude ψ(x) = f(x)eiζ·x. As discussed in [20, (6.1)], this directly 
leads to

ψ[r](x) = f(x) cos(ζ · x), ψ[i](x) = f(x) sin(ζ · x), x ∈ R2, (3.7)

where the real-valued functions ψ[r] and ψ[i] are the real and imaginary parts of the complex-valued function 
ψ satisfying ψ(x) = ψ[r](x) + iψ[i](x). Now it is easy to see that ψ[r] and ψ[i] indeed have directionality, 
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Fig. 1. The frequency tilings of two-dimensional representation systems. Left: Tensor product real-valued orthonormal wavelets with 
two-level decomposition. It only offers horizontal and vertical directions. Middle: TP-CTF6 with one-level decomposition. Each 
color represents one directional element in the frequency domain. There are total 16 directional elements with ±45◦ directions 
repeated once. Right: Shearlets with two-level decomposition. The frequency tiling of curvelets is quite similar to that of shearlets 
by using rotation instead of shear operation and therefore, the rectangles are replaced by circles in the frequency tiling of curvelets. 
Directionality of shearlets and curvelets increases with scales.

mainly due to the directional cosine waves cos(ζ · x) and sine waves sin(ζ · x) (provided ζ �= 0). Since g
is a well localized smooth function, the real-valued window function f is well localized around the origin 
with rapid decay. When ‖ζ‖ �= 0 is small, the cosine wave cos(ζ · x) and the sine wave sin(ζ · x) have 
low frequency (i.e., slowly oscillating waves). As a consequence, the elements ψ[r] and ψ[i] exhibit edge-like 
shapes (we call them edge-like directional elements). Such edge-like directional elements can be used to 
capture edge singularities. On the other hand, if ‖ζ‖ �= 0 is relatively large, the cosine and sine waves have 
high frequency (i.e., rapidly oscillating waves). As a consequence, the elements ψ[r] and ψ[i] exhibit DCT-like 
(or texture-like) shapes (we call them texture-like directional elements). See Fig. 4 for the edge-like and 
texture-like directional elements.

The directionality of elements ψ in curvelets [1,2,34] and shearlets [10,11,21,23–25,27,28] is achieved by 
designing ψ̂ so that its support obeys the parabolic law in [1]. Roughly speaking, ψ̂ is a needle-like element 
and is symmetric about the origin. Consequently, ψ itself is an edge-like (or needle-like) element in the 
spatial domain. As the resolution/scale increases, the angular resolution also increases so that there are 
more and more directional elements at different angles in finer resolutions. Therefore, curvelets and shear-
lets cannot have the Cartesian tensor product structure as the separable representation systems such as 
DCT, TP-CTFm and DT-CWT. The main difference between curvelets and shearlets lies in that curvelets 
use rotation operation [1,2,34] while shearlets use shear matrices to get different directions of angles [10]. 
It has been proved in [1] for curvelets and in [11,24] for shearlets that they provide optimal sparse approxi-
mation property for piecewise C2 cartoon-like functions/images. Note that to achieve such optimal sparse 
approximation properties, curvelets and shearlets must have low controllable redundancy rates. To reduce 
the redundancy rates caused by the increased angular resolution, curvelets and shearlets are more sparsely 
translated in the spatial domain than the traditional wavelets. For more detailed discussions, see [1,2,34]
and references therein for curvelets and see [10,11,21,23–25,27,28] for shearlets. The nonseparable directional 
tight framelets in [14] (also [12]) also achieve directionality in a similar fashion, but with the advantage of 
having underlying filter banks. As argued in [21], certain types of shear tight frames can be regarded as a 
subsystem of directional tight framelets in [14]. However, the nonseparable directional tight framelets in [14]
have much higher redundancy rates and consequently, their approximation properties are similar to those 
of traditional wavelets. See Fig. 1 for comparison of frequency tilings for three two-dimensional directional 
representation systems: tensor product real-valued wavelets, TP-CTF6, and shearlets, while the frequency 
tiling of curvelets is similar to that of shearlets by using rotation operation for curvelets, instead of shear 
operation for shearlets.

The number of directions from edge-like directional elements in any tensor product representation systems 
is intrinsically limited and the total number of angles does not increase as the resolution level increases. 
As a consequence, the approximation properties of TP-CTFm are similar to those of traditional wavelets. 
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However, many natural images have both cartoon-like parts and texture-like parts. The tensor product 
complex tight framelets offer the flexibility of having both edge-like directional elements and texture-like 
elements. This makes them particularly appealing for applications in image and video processing.

In the following, let us explain why we are particularly interested in TP-CTF6 and what are the differences 
among TP-CTFm with m ≥ 3. For m = 3, TP-CTF3 only offers four directions in dimension two: edge-like 
directional elements along 0◦, ±45◦, 90◦. Though TP-CTF3 performs better than traditional wavelets, having 
only four directions in dimension two makes it inadequately effective for the purpose of image processing. 
The more general TP-CTF2s+1 with s ∈ N contains s groups of directional elements: The group with the 
lowest frequency consists of edge-like directional elements along the four directions 0◦, ±45◦, 90◦ (just as in 
TP-CTF3), while the other s − 1 groups consist of texture-like directional elements with different frequency 
bands, ranging from moderate frequencies to high frequencies.

The family TP-CTF2s+2 with s ∈ N is built on TP-CTF2s+1 with better edge-like directionality by 
splitting the real-valued low-pass filter a into two auxiliary complex-valued filters a+ and a−. As discussed 
in [20], the TP-CTF4 behaves quite similar to DT-CWT (though they are quite different in nature) and 
has six directions in dimension two: edge-like directional elements approximately along ±15◦, ±45◦, ±75◦. 
Similarly, the more general TP-CTF2s+2 with s ∈ N contains s groups of directional elements: The group 
with the lowest frequency consists of edge-like directional elements along the six directions ±15◦, ±45◦, ±75◦
(just as in TP-CTF4), while the other s −1 groups consist of texture-like directional elements with different 
frequency bands, ranging from moderate frequencies to high frequencies.

For applications in image and video processing, TP-CTF2s+2 with s ∈ N are often used since they offer 
better edge-like directionality than TP-CTF2s+1. To reduce computational complexity, one often takes s = 2
(which leads to TP-CTF6) so that we have one group of edge-like directional elements with six directions 
to capture cartoon parts and the other group of texture-like directional elements with ten directions to 
handle texture parts of an image. Many numerical experiments in [20,33] on image processing confirm that 
TP-CTF6 has the best practical performance among the family of TP-CTFm with m ≥ 3. Hence, in this 
paper we mainly focus on TP-CTF6 by modifying it appropriately so that it has the desired low redundancy 
rate while keeps all the desirable properties of the original TP-CTF6.

3.3. Directional tensor product complex tight framelets with low redundancy

Now we are ready to construct directional tensor product complex tight framelets with low redundancy 
by using large sampling factors for TP-CTFm. Though all our arguments in this subsection can be applied 
to every TP-CTFm with m ≥ 3, since the directional tensor product complex tight framelet TP-CTF6 has 
been known to have superior performance for image denoising in [20] and for image inpainting in [33], we 
shall only concentrate here on the modification of TP-CTF6. But we shall outline the key ideas for reducing 
the redundancy rates of a general TP-CTFm at the end of this subsection.

As discussed in detail in [15,19,20], the directionality of the tensor product complex tight framelets is 
closely related to the frequency separation property of the high-pass filters in its underlying one-dimensional 
tight framelet filter bank. More precisely, for a filter u, we say that u has good frequency separation property
if either û(ξ) ≈ 0 for all ξ ∈ [−π, 0] or û(ξ) ≈ 0 for all ξ ∈ [0, π]. Moreover, we say that a filter u has the 
ideal frequency separation property if either û(ξ) = 0 for all ξ ∈ [−π, 0] or û(ξ) = 0 for all ξ ∈ [0, π].

In this subsection, we are interested in building a one-dimensional tight framelet filter bank CTF↓
6 (called 

reduced CTF6 or CTF6 down 4), which consists of one real-valued low-pass filter a, two auxiliary complex-
valued filters a+, a−, and four complex-valued high-pass filters b+1 , b

+
2 , b

−
1 , b

−
2 such that

(1) a− = a+, b−1 = b+1 , and b−2 = b+2 .
(2) Both {a ! 2; b+1 ! 4, b+2 ! 4, b−1 ! 4, b−2 ! 4} and CTF↓

6 := {a+ ! 4, a− ! 4; b+1 ! 4, b+2 ! 4, b−1 ! 4, b−2 ! 4} are tight 
framelet filter banks.
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Fig. 2. Diagram of the one-dimensional two-level discrete framelet transform using a one-dimensional tight framelet filter bank 
{a ! 2; b1 ! 4, . . . , bs ! 4}. Here each box with a filter inside means convolution with the filter inside the box. Note that Ta,2v =
2(v ∗ a�) ↓ 2 and Sa,2v = 2(v ↑ 2) ∗ a, while Tb�,4v = 4(v ∗ b�� ) ↓ 4 and Sb�,4v = 4(v ↑ 4) ∗ b� for � = 1, . . . , s. Note that a� is the 
flip-conjugate sequence of a given by a�(k) := a(−k) for all k ∈ Z, or equivalent, â�(ξ) = â(ξ).

(3) The auxiliary filters a+, a− and all the high-pass filters b+1 , b
+
2 , b

−
1 , b

−
2 have good frequency separation 

property.

See Fig. 2 for an illustration of a one-dimensional multilevel fast framelet transform employing a filter 
bank {a ! 2; b1 ! 4, . . . , bs ! 4}.

The directionality of the tensor product complex tight framelet TP-CTF↓
6, which we shall introduce 

later, largely depends on the frequency separation property of all the high-pass filters in the J-level discrete 
affine system DASJ({a ! 2; b+1 ! 4, b+2 ! 4, b−1 ! 4, b−2 ! 4}) as well as the frequency separation property of the two 
auxiliary filters a+ and a−. For j ∈ N and � = 1, 2, we define

âj(ξ) := â(ξ)â(2ξ) · · · â(2j−2ξ)â(2j−1ξ), (3.8)

b̂+�,j := âj−1(ξ)b̂+� (2j−1ξ) = â(ξ)â(2ξ) · · · â(2j−2ξ)b̂+� (2j−1ξ), (3.9)

b̂−�,j := âj−1(ξ)b̂−� (2j−1ξ) = â(ξ)â(2ξ) · · · â(2j−2ξ)b̂−� (2j−1ξ). (3.10)

Note that a1 = a, b+�,1 = b+� and b−�,1 = b−� . We also define

aj;k := 2j/2aj(· − 2jk), b+�,j;k := 2(j+1)/2b+�,j(· − 2j+1k), b−�,j;k := 2(j+1)/2b−�,j(· − 2j+1k)

for � = 1, 2, j ∈ N, and k ∈ Z. Then its associated one-dimensional J-level discrete affine system is given by

DASJ({a ! 2; b+1 ! 4, b+2 ! 4, b−1 ! 4, b−2 ! 4}) = {aJ;k : k ∈ Z} ∪ {b+�,j;k, b−�,j;k : k ∈ Z, � = 1, 2, j = 1, . . . , J}.

A detailed construction of CTF↓
6 is given in the following result by defining the filters a and b+1 , b

+
2 , b

−
1 , b

−
2

as in (3.2) with s = 2 and a+, a− as in (3.3).

Theorem 4. Let 0 < c0 < c1 < c2 < π and ε0, ε1, ε2, ε3 be positive real numbers. The filters a, a+, b+1 , b
+
2 are 

constructed by defining their 2π-periodic Fourier series on the basic interval [−π, π) as follows:

â := χ[−c1,c1];ε1,ε1 , â+ := χ[0,c1];ε0,ε1 and b̂+1 := χ[c1,c2];ε1,ε2 , b̂+2 := χ[c2,π];ε2,ε3 . (3.11)

Define

a− := a+, b−1 := b+1 , b−2 := b+2 . (3.12)
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If

ε0 + ε1 � c1 � π
2 − ε0 − ε1,

π
2 + ε2 + ε3 � c2 � π − ε2 − ε3, ε1 + ε2 � c2 − c1 � π

2 − ε1 − ε2,

(3.13)

then both {a ! 2; b+1 ! 4, b+2 ! 4, b−1 ! 4, b−2 ! 4} and {a+ ! 4, a− ! 4; b+1 ! 4, b+2 ! 4, b−1 ! 4, b−2 ! 4} are tight framelet filter 
banks. If both (3.13) and the following additional conditions are satisfied:

1
2c2 + 1

2ε2 + c1 + ε1 � π and c1 + ε1 + 1
2ε3 � π

2 , (3.14)

then all the high-pass filters b+1,j;k, b
+
2,j;k, b

−
1,j;kb

−
2,j;k, k ∈ Z at all scale levels j ≥ 2 in the J-level discrete 

affine system DASJ({a ! 2; b+1 ! 4, b+2 ! 4, b−1 ! 4, b−2 ! 4}) have the ideal frequency separation property for every 
J ≥ 2, more precisely,

b̂+�,j(ξ) = 0, ∀ ξ ∈ [−π, 0] and b̂−�,j(ξ) = 0, ∀ ξ ∈ [0, π] for all j ≥ 2 and � = 1, 2, (3.15)

where b̂+�,j and b̂−�,j are defined in (3.9) and (3.10), respectively.

Proof. By Theorem 1, {a ! 2; b+1 ! 4, b+2 ! 4, b−1 ! 4, b−2 ! 4} is a tight framelet filter bank if and only if

|â(ξ)|2 + |b̂+1 (ξ)|2 + |b̂+2 (ξ)|2 + |b̂−1 (ξ)|2 + |b̂−2 (ξ)|2 = 1, (3.16)

â(ξ)â(ξ + π) +
2∑

�=1

(
b̂+� (ξ)b̂+� (ξ + π) + b̂−� (ξ)b̂−� (ξ + π)

)
= 0, (3.17)

2∑
�=1

(
b̂+� (ξ)b̂+� (ξ + π

2 ) + b̂−� (ξ)b̂−� (ξ + π
2 )
)

= 0, (3.18)

2∑
�=1

(
b̂+� (ξ)b̂+� (ξ + 3π

2 ) + b̂−� (ξ)b̂−� (ξ + 3π
2 )

)
= 0. (3.19)

By the definition of the bump function, it is easy to check that the identity in (3.16) holds. By our assumption 
in (3.13), we see that for all ξ ∈ R,

â(ξ)â(ξ + π) = 0, â+(ξ)â+(ξ + γπ
2 ) = 0, â−(ξ)â−(ξ + γπ

2 ) = 0, ∀ γ = 1, 2, 3 (3.20)

and

û(ξ)û(ξ + γπ
2 ) = 0, ∀ γ = 1, 2, 3, u ∈ {b+1 , b+2 , b−1 , b−2 }. (3.21)

Therefore, all the three identities in (3.17)–(3.19) trivially hold. Thus, {a ! 2; b+1 ! 4, b+2 ! 4, b−1 ! 4, b−2 ! 4} is a 
tight framelet filter bank.

By Theorem 1, {a+ ! 4, a− ! 4; b+1 ! 4, b+2 ! 4, b−1 ! 4, b−2 ! 4} is a tight framelet filter bank if and only if

|â+(ξ)|2 + |â−(ξ)|2 + |b̂+1 (ξ)|2 + |b̂+2 (ξ)|2 + |b̂−1 (ξ)|2 + |b̂−2 (ξ)|2 = 1 (3.22)

and for all γ = 1, 2, 3,

â+(ξ)â+(ξ + γπ
2 ) + â−(ξ)â−(ξ + γπ

2 ) +
2∑(

b̂+� (ξ)b̂+� (ξ + γπ
2 ) + b̂−� (ξ)b̂−� (ξ + γπ

2 )
)

= 0. (3.23)

�=1
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By the definition of the bump function, it is easy to check that the identity in (3.22) holds. It also follows 
directly from (3.20) and (3.21) that (3.23) trivially holds. Hence, {a+ ! 4, a− ! 4; b+1 ! 4, b+2 ! 4, b−1 ! 4, b−2 ! 4} is 
a tight framelet filter bank.

Using (3.13) and (3.14), by calculation we can directly check that the ideal frequency separation property 
in (3.15) holds. �

We now discuss the tensor product tight framelet filter bank TP-CTF↓
6 derived from the one-dimensional 

tight framelet filter banks in Theorem 4. Define TP-CTF -HP↓
6 to be the set consisting of total 6d − 2d

complex-valued high-pass filters as follows:

TP-CTF -HP↓
6 :=

(
⊗d{a+, a−; b+1 , b

+
2 , b

−
1 , b

−
2 }

)
\
(
⊗d{a+, a−}

)
.

Then the directional tensor product complex tight framelet filter bank TP-CTF↓
6 (called reduced TP-CTF6

or TP-CTF6 down 4) for dimension d is defined to be

TP-CTF↓
6 := {⊗da ! 2Id;u ! 4Id with u ∈ TP-CTF -HP↓

6}. (3.24)

Note that the low-pass filter ⊗da is real-valued and due to the relations in (3.12), we see that u ∈
TP-CTF -HP↓

6 for any u ∈ TP-CTF -HP↓
6. Therefore, we can always rewrite the tight framelet filter bank 

TP-CTF↓
6 as

TP-CTF↓
6 = {⊗da ! 2Id;u ! 4Id, u ! 4Id with u ∈ TP-CTF -CHP↓

6},

where TP-CTF -CHP↓
6 is a subset of TP-CTF -HP↓

6 and has exactly 6
d−2d

2 filters. Consequently, the complex-
valued tight framelet filter bank TP-CTF↓

6 leads to the following real-valued tight framelet filter bank:

{⊗da ! 2Id;
√

2 Re(u) ! 4Id,
√

2 Im(u) ! 4Id with u ∈ TP-CTF -CHP↓
6}. (3.25)

Therefore, we essentially have only total (6d − 2d)/2 number of complex-valued high-pass filters in 
TP-CTF -HP↓

6. Thus, the number of real coefficients (by counting a complex number as two real numbers) 
produced by all the complex-valued filters in TP-CTF↓

6 is the same as those produced by the real-valued 
tight framelet filter bank in (3.25). That is, up to a multiplicative constant 

√
2, TP-CTF -HP↓

6 produces 
exactly the same set of real coefficients (by identifying a complex number with two real numbers: its real 
and imaginary parts) as the 6d− 2d real-valued filters in (3.25) do. Note that the sampling matrix is 4Id for 
all high-pass filters from ⊗d{a+, a−, b+1 , b

+
2 , b

−
1 , b

−
2 }, while we only perform sampling by 2Id for the low-pass 

filter ⊗da. Consequently, regardless of the decomposition level, the redundancy rate of the fast framelet 
transform employing TP-CTF↓

6 for dimension d is no more than

6d − 2d

4d
∞∑
j=0

1
2dj = 3d − 1

2d − 1 .

For example, the redundancy rates of TP-CTF↓
6 are 2, 22

3 , 3
5
7 , 5

1
3 and 725

31 for d = 1, . . . , 5, respectively. See 

Table 1 for more details on the redundancy rates of TP-CTF↓
6. Note that the redundancy rate of the original 

TP-CTF6 is 2d times that of TP-CTF↓
6 for dimension d.

We now briefly explain how to reduce the redundancy rate of a general TP-CTFm with m ≥ 3. For 
s ∈ N, to construct TP-CTF2s+1 = {a; b+1 , . . . , b+s , b−1 , . . . , b−s } with b−� = b+� for � = 1, . . . , s, we often 
require â(ξ)â(ξ + π) = 0 and

b̂+(ξ)b̂+(ξ + π) = 0 ∀ � = 1, . . . , s. (3.26)
� �
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Let m� be the largest positive integer such that

b̂+� (ξ)b̂+� (ξ + 2πk
m�

) = 0 ∀ k = 1, . . . ,m� − 1, (3.27)

then we can use the sampling factor m� for the high-pass filters b+� and b−� . This leads to a tight framelet 
filter bank TP-CTF↓

2s+1 = {a ! 2; b+1 ! m1, . . . , b+s ! ms, b
−
1 ! m1, . . . , b−s ! ms} with reduced redundancy rate. 

For s = 1, it is not difficult to observe that m1 cannot be larger than 2 and therefore, the above method 
does not apply to TP-CTF3 to reduce its redundancy rate. For s > 1, by a similar construction as TP-CTF↓

6, 
the above method indeed leads to TP-CTF↓

2s+1 with lower reduced redundancy rate than that of the original 
TP-CTF2s+1.

For s ∈ N, to construct TP-CTF2s+2 = {a+, a−; b+1 , . . . , b+s , b
−
1 , . . . , b

−
s } with a− = a+ and b−� = b+� for 

� = 1, . . . , s, we often require (3.26) to be satisfied. Let m� be the largest positive integer such that (3.27)
holds. Let m0 be the largest positive integer such that

â+(ξ)â+(ξ + 2πk
m0

) = 0 ∀ k = 1, . . . ,m0 − 1.

Then we have a tight framelet filter bank TP-CTF↓
2s+2 = {a+ ! m0, a− ! m0; b+1 ! m1, . . . , b+s ! ms, b

−
1 ! m1, . . . ,

b−s ! ms} with reduced redundancy rate. For s = 1, it is not difficult to observe that m0 and m1 cannot be 
larger than 2 and therefore, the above method does not apply to TP-CTF4 to reduce its redundancy rate. 
For s > 1, by a similar construction as TP-CTF↓

6, the above method indeed leads to TP-CTF↓
2s+2 with 

lower reduced redundancy rate than that of the original TP-CTF2s+2.
Considering the J-level discrete affine systems induced by TP-CTFm with m ≥ 3, we also point out 

that it is possible to slightly further reduce the redundancy rates of TP-CTF↓
m with m ≥ 3 by a more 

refined method. However, this leads to a slightly more complicated algorithm and we shall not discuss 
the detail here. Instead we shall provide numerical experiments for both TP-CTF↓

6 and TP-CTF↓
5 =

⊗d{a ! 2; b+1 ! 4, b+2 ! 4, b−1 ! 4, b−2 ! 4}. Note that the redundancy rate of TP-CTF↓
5 is 3d−1

2d−1 , which is the same 

as that of TP-CTF↓
6 and TP-CTF3.

4. Numerical experiments on image and video processing

In this section, we shall test the performance of our constructed directional tensor product complex 
tight framelet TP-CTF↓

6 with low redundancy in Section 3. Then we shall compare it with many other 
frame-based methods for image and video processing such as the denoising and inpainting problems.

For the directional tensor product complex tight framelet TP-CTF↓
6 with low redundancy that will be 

used in this section for image and video processing, the parameters in Theorem 4 are set to be

c1 = π
2 − 0.425, c2 = 2.0, ε0 = 0.125, ε1 = 0.3, ε2 = 0.35, ε3 = 0.0778. (4.1)

TP-CTF↓
5 has the same parameters as those of TP-CTF↓

6 for c1, c2, ε1, ε2, ε3. Note that the above parameters 
satisfy the conditions in both (3.13) and (3.14). The parameters for other TP-CTFm are set to be the same 
as those in the paper [20]. For the convenience of the reader, we explicitly list these parameters here: For 
TP-CTF3, we set

c1 = 33
32 , c2 = π, ε1 = 69

128 , ε2 = 51
512 .

We compare TP-CTF3 and TP-CTF↓
5 with TP-CTF↓

6 mainly because they have the same redundancy rate 
as TP-CTF↓

6. For TP-CTF6, we set

c1 = 119 , c2 = π + 119 , c3 = π, ε0 = 35 , ε1 = 81 , ε2 = 115 , ε3 = 115 .
128 2 256 128 128 256 256
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Fig. 3. The one-dimensional tight framelet filter bank CTF↓
6 = {a+ ! 4, a− ! 4; b+1 ! 4, b+2 ! 4, b−1 ! 4, b−2 ! 4} in Theorem 4 with parameters 

in (4.1). Solid line for â+, dotted line for â−, dashed line for b̂+1 , dash–dotted line for b̂−1 , circled line for b̂+2 , and circle–dotted line 
for b̂−2 .

Fig. 4. The first two rows show the real part and the last two rows show the imaginary part of the 2D high-pass filters at the level 
4 in DAS5(TP-CTF↓

6) for dimension two. Among these 16 graphs for the first two rows or the last two rows, the directions along 
±45◦ are repeated once. Hence, there are a total of 14 directions in the 2D discrete affine system DAS5(TP-CTF↓

6).

To have some ideas about the filters in CTF↓
6, see Fig. 3 for the frequency response of the filters in CTF↓

6. 
For the directionality of TP-CTF↓

6 in dimension two, see Fig. 4 for some elements of DASJ(TP-CTF↓
6) in 

dimension two with J = 5.
As usual, the performance is measured by the peak signal-to-noise ratio (PSNR) which is defined to be

PSNR(u, ů) = 10 log10
2552

MSE(u− ů) with MSE(u− ů) := 1
N2

N∑
j=1

N∑
k=1

|u(j, k) − ů(j, k)|2. (4.2)

where u is an original/true image supported on [1, N ]2 and ů is a reconstructed data.
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4.1. Image denoising and image inpainting

We first compare the performance of TP-CTF↓
6 for image denoising. We compare the performance of 

TP-CTF↓
6 with two groups of different approaches. The first group uses tensor-product approach including 

TP-CTF3, TP-CTF↓
5 (both have the same redundancy rate 22

3 as TP-CTF↓
6), and TP-CTF6 (which has 

the same directionality as TP-CTF↓
6 but has a higher redundancy rate 102

3 ), as well as the dual tree 
complex wavelet transform (DT-CWT) in [31] (which has the redundancy rate 4). The second group employs 
non-tensor-product approach including curvelets, shearlets, and smooth affine shear tight frames. Curvelets 
in [2] and compactly supported shearlets in [27,28] can be downloaded from the corresponding authors’ 
websites. We download each of their packages and run their denoising codes on the four 512 × 512 grayscale 
test images in (a)–(d) of Fig. 5. Smooth affine shear tight frames (ASTF) are developed by two of the 
authors of this paper in [21].

The CurveLab package at http :/ /www .curvelab .org has two subpackages: one uses un-equispace FFT 
and the other uses frequency wrapping. Here we use the frequency wrapping package; detailed information 
on CurveLab package can be found in [2]. The performance of these two subpackages are very close to each 
other (less than 0.2 dB differences) and here we choose the one with the frequency wrapping for comparison. 
For CurveLab, the total number of scales is 5. At the finest scale level, the CurveLab uses an isotropic wavelet 
transform to avoid checkerboard effect. At the scale level 4, 32 (angular) directions are used. At the scale 
levels 3 and 2, 16 (angular) directions are used. At the coarsest scale level, 8 (angular) directions are used. 
The redundancy rate of the CurveLab wrapping package is about 2.8. Hard thresholding ηhard

λ (c) is applied 
to curvelet coefficients, where

ηhard
λ (c) =

{
c, |c| > λ,

0, otherwise.

The threshold value λ depends on the scale level and curvelet filters. At the finest scale, λ = 4σb while 
λ = 3σb for all other scales, where σb := σ‖b‖2, σ is the noise standard deviation and b is the curvelet 
high-pass filter inducing the coefficient c. That is, σb is the standard deviation of the Gaussian noise at the 
frame band using the high-pass filter b.

The ShearLab package at http :/ /www .shearlab .org also has many subpackages for different implementa-
tions. Here we choose two subpackages using compactly supported shearlet frames. One is DST as described 
in [27] and the other is DNST as described in [28], where DST is a tight frame while DNST is a frame. 
The DNST in [28] has the best performance so far in the ShearLab package. For DST, the total number 
of scales is 5. Ten shear directions are used across all scale levels. The redundancy rate of the DST is 40. 
Hard thresholding ηhard

λ (c) is applied to DST coefficients, where λ depends on the scale. For the finest scale 
λ = 3.6σb while λ = 2.7σb for all other scales. For DNST, the total number of scales is 4. Sixteen shear 
directions are used for the finest scale levels 4 and 3; while 8 shear directions are used for the other two 
scale levels. All filters are implemented in an undecimated fashion. The redundancy rate of DNST is 49. 
Hard thresholding ηhard

λ (c) is applied to DNST coefficients, where λ depends on the scale. For the finest 
scale λ = 3.8σb while λ = 2.5σb for all other scales.

For the smooth affine shear tight frames (ASTF) in [21], the total number of scales is 5. Total 16 shear 
directions are used for the finest scale level. For the next three scales, 8 shear directions are used, and for 
the coarsest scale level, 4 shear directions are used. The redundancy rate of this system is about 5.4. The 
soft thresholding ηsoft

λ (c) is defined to be

ηsoft
λ (c) =

{
c− λ c

|c| , |c| > λ,
0, otherwise.

http://www.curvelab.org
http://www.shearlab.org
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Local-soft thresholding ηls
λc

(c) is applied to the normalized ASTF coefficients, which is a slight modification 
of the soft thresholding and is give by

ηls
λc

(c) := ηsoft
λc

(c) with λc = σ2
b/σc,

where σb := σ‖b‖2 with b being the high-pass filter inducing the frame coefficient c and

σc :=
{√

σ̆2
c − σ2

b , σ̆c > σb,

0, otherwise
with σ̆2

c := 1
#Wc

∑
j∈Wc

|cj |2, (4.3)

where #Wc is the cardinality of the window set Wc which is taken here to be the [−4, 4]2 window centering 
around the frame coefficient c at the band induced by the filter b. See [21] for more details.

The decomposition levels for all directional tensor product complex tight framelets TP-CTFm are set to 
be J = 5, while the decomposition level for the dual tree complex wavelet transform is set to be J = 6 (see 
[31,32]). We use symmetric boundary extension for all test images to avoid the boundary effect with the 
boundary extension size for all test images being 16 pixels. The strategy for processing frame coefficients 
for all tensor product transforms is the bivariate shrinkage proposed in [32] with window size 7 × 7 and 
constant 

√
3. Let σ denote the standard deviation of the i.i.d. Gaussian noise. More precisely, a frame 

coefficient c is processed by the bivariate shrinkage function ηbs
λ which is another slight modification of the 

soft thresholding by taking into account the parent coefficient:

ηbs
λ (c) := ηsoft

λc
(c) with λc =

√
3σ2

b

σc

√
1 + |cp/c|2

, (4.4)

where σb := σ‖b‖2 with b being the high-pass filter inducing the frame coefficient c, the frame coefficient cp
is the parent coefficient of c in the immediate higher scale, and σc is calculated as in (4.3) with a [−3, 3]2
window set Wc centering around the frame coefficient c at the band induced by the filter b.

For transforms producing real-valued coefficients (e.g., transforms using real-valued orthonormal wavelets, 
curvelets or shearlets), the hard thresholding is often used with the popular heuristic choice of the threshold 
value 3σb. Since TP-CTFm and TP-CTF↓

m are transforms producing complex coefficients as DT-CWT does, 
we simply adopt the above bivariate shrinkage in (4.4) which has been used for DT-CWT in [31,32]. For 
transforms producing complex coefficients such as DT-CWT and TP-CTFm (as well as TP-CTF↓

m), the real 
part and the imaginary part of a complex coefficient are highly correlated to each other, mainly due to the 
relation in (3.7). Hence, the popular hard thresholding in the literature may no longer be a suitable choice 
for transforms producing complex (correlated) coefficients. Since different transforms often have different 
features and characteristics, as long as the computational complexity of different strategies for processing 
coefficients is comparable to each other, suitable strategies to be adopted for processing coefficients are 
at the hands of the researchers for their own developed transforms in order to achieve the best possible 
performance in applications. All the above discussed shrinkage strategies used for comparison in this paper 
have similar computational complexity and we do not discuss in this paper what are the possible impacts 
and consequences of different shrinkage strategies applied to different transforms. For transforms producing 
complex coefficients, it is our opinion and experience that simple effective better shrinkage strategies other 
than bivariate shrinkage remain to be developed in the future.

See Fig. 5 for the four 512 × 512 grayscale test images: Barbara, Lena, Fingerprint, and Boat. The 
comparison results of performance are reported in Table 2 for image denoising under independent identically 
distributed Gaussian noise with noise standard deviation σ = 5, 10, 25, 40, 50, 80, 100.

For texture-rich test images such as Barbara and Fingerprint, we can see from Table 2 that TP-CTF↓
6

outperforms TP-CTF↓
5, TP-CTF3, DT-CWT, CurveLab, DST and DNST. It can have up to 1.32 dB PSNR 
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Fig. 5. (a)–(d) are the four 512 × 512 grayscale test images: Barbara, Lena, Fingerprint, and Boat. (e)–(f) are the first frame of 
the 192 × 192 × 192 videos: Mobile and Coastguard. (e) and (f) are inpainting masks of size 512 × 512.

value improvement over TP-CTF3 for Barbara at σ = 40 and about 0.5 dB improvement over DT-CWT for 
Fingerprint at σ = 10. In comparison with TP-CTF6, TP-CTF↓

6 outperforms TP-CTF6 for the test image 
Fingerprint for all σ noise levels but has slightly worse performance than TP-CTF6 for the test image of 
Barbara. CurveLab (Wrap) also has low redundancy rate, yet its performance is not as good as others for 
all the test images. DST and DNST have high redundancy rates almost 20 times of that of TP-CTF↓

6. 
However, for such images of Barbara and Fingerprint, the performance of DST and DNST is not as good as 
our TP-CTF↓

6. With redundancy rate about 2 times of TP-CTF↓
6, the performance of ASTF is better than 

TP-CTF↓
6 only when the noise level is high σ > 40.

It can be seen from the test images of Lena and Boat in Fig. 5 that most of their edges are concentrating 
along the horizontal, the vertical, or the two diagonal directions. For such test images, when σ is small 
(σ < 40), the performance of TP-CTF↓

6 is almost the same as TP-CTF3, TP-CTF↓
5 and DT-CWT. Only 

when σ is high (σ ≥ 40), TP-CTF↓
6 performs not as well as TP-CTF3 and DT-CWT, but generally within 

less than 0.3 dB loss of performance. For comparison among TP-CTF↓
6 and TP-CTF6, DNST, ASTF, we see 

at most 0.48 dB loss of performance of TP-CTF↓
6 for both Lena and Boat. TP-CTF↓

6 outperforms TP-CTF↓
5, 

DST, and CurveLab for the test images of Lena and Boat.
In addition to the experimental results in Table 2 for image denoising, we also perform additional ex-

periments by applying the same hard thresholding strategy to all transforms. All the settings in Table 3
are the same as in Table 2, except that all the strategies for processing coefficients are now replaced by the 
hard thresholding ηhard

λ (c) with λ = 3.6σb for the finest scale and λ = 3σb for all other scales. Numerical 
results are reported in Table 3. We can see from Table 3 that in general, the performance of TP-CTF↓

6 is 
worse than TP-CTF6, DST, and DNST but better than other transforms including TP-CTF3, DT-CWT, 
CurveLab, and ASTF. Note that TP-CTF6, DST, and DNST are transforms with high redundancy rates. 
Our experiments in Table 3 seem to indicate that the popular hard thresholding method favors transforms 
with high redundancy rates more than it does for transforms with low redundancy rates. Moreover, com-
paring results between Tables 2 and 3, we see that TP-CTF↓

6 doesn’t outperform TP-CTF6 any more for 
texture-rich images when the hard thresholding replaces the bivariate shrinkage. This indicates that for 
different transforms, different thresholding methods should be used so that all the potentials of a particular 
transform can be exploited.

TP-CTF6 has recently been used in [33] for the image inpainting problem with impressive performance 
over many other inpainting algorithms. Here we simply use the same inpainting algorithm as developed in [33]
but with TP-CTF6 being replaced by TP-CTF↓

6. As similar to most frame-based inpainting algorithms in the 
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Table 2
Comparison results on image denoising, in terms of PSNR values, of several image denoising methods using our proposed directional 
tensor product complex tight framelet TP-CTF↓

6 with the redundancy rate 2 2
3 , tensor product complex tight framelet TP-CTF6

with the redundancy rate 10 2
3 (having the same directionality as TP-CTF↓

6), TP-CTF3 and TP-CTF↓
5 with redundancy rate 2 2

3
(having the same redundancy rate as TP-CTF↓

6), dual tree complex wavelet transform DT-CWT with the redundancy rate 4 in [31], 
CurveLab (Wrap) with redundancy rate 2.8 in [2], DST with redundancy rate 40 in [27], DNST with redundancy rate 49 in [28], and 
ASTF with redundancy rate 5.8 in [21]. The TP-CTF↓

6 , TP-CTF6, TP-CTF↓
5 , TP-CTF3, DT-CWT are separable transforms using 

tensor product tight frames while the CurveLab, DST, ASTF are nonseparable transforms using 2D nonseparable tight frames 
while DNST is only a nonseparable (undecimated) frame. The values in parentheses are the PSNR gain/loss of TP-CTF↓

6 over 
the compared transform: positive numbers in parentheses mean that TP-CTF↓

6 performs better than the corresponding transform, 
while negative numbers in parentheses mean that TP-CTF↓

6 performs worse than the corresponding transform.

σ TP-CTF↓
6 TP-CTF6 TP-CTF↓

5 TP-CTF3 DT-CWT CurveLab DST DNST ASTF
512 × 512 Barbara

5 37.63 37.84(−0.21) 37.59(0.04) 37.16(0.47) 37.37(0.26) 33.83(3.80) 37.76(−0.13) 37.17(0.46) 37.40(0.23)
10 33.97 34.18(−0.21) 33.81(0.16) 33.19(0.78) 33.54(0.43) 29.17(4.80) 33.94(0.03) 33.62(0.35) 33.74(0.23)
25 29.28 29.35(−0.07) 28.86(0.42) 28.04(1.24) 28.81(0.47) 24.83(4.45) 28.90(0.38) 28.93(0.35) 29.29(−0.01)
40 26.85 26.86(−0.01) 26.38(0.47) 25.53(1.32) 26.45(0.40) 23.87(2.98) 26.36(0.49) 26.48(0.37) 27.08(−0.23)
50 25.73 25.71(0.02) 25.24(0.49) 24.48(1.25) 25.36(0.37) 23.38(2.35) 25.22(0.51) 25.31(0.42) 26.05(−0.32)
80 23.51 23.53(−0.02) 23.09(0.42) 22.82(0.69) 23.27(0.24) 22.22(1.29) 23.11(0.40) 22.96(0.55) 23.97(−0.46)

100 22.58 22.64(−0.06) 22.29(0.29) 22.25(0.33) 22.42(0.16) 21.61(0.97) 22.23(0.35) 22.06(0.52) 23.02(−0.44)

512 × 512 Lena
5 38.16 38.37(−0.21) 38.14(0.02) 37.98(0.18) 38.25(−0.09) 35.77(2.39) 38.22(−0.06) 38.01(0.15) 38.19(−0.03)

10 35.22 35.48(−0.26) 35.16(0.06) 34.93(0.29) 35.19(0.03) 33.37(1.85) 35.19(0.03) 35.35(−0.13) 35.18(0.04)
25 31.20 31.60(−0.40) 31.07(0.13) 31.17(0.03) 31.29(−0.09) 30.07(1.13) 31.09(0.11) 31.51(−0.31) 31.40(−0.20)
40 29.10 29.52(−0.42) 28.98(0.12) 29.24(−0.14) 29.22(−0.12) 28.15(0.95) 28.92(0.18) 29.32(−0.22) 29.40(−0.30)
50 28.11 28.54(−0.43) 28.00(0.11) 28.34(−0.23) 28.22(−0.11) 27.19(0.92) 27.89(0.22) 28.21(−0.10) 28.46(−0.35)
80 26.11 26.47(−0.36) 25.98(0.13) 26.42(−0.31) 26.15(−0.04) 25.16(0.95) 25.71(0.40) 25.78(0.33) 26.44(−0.34)

100 25.21 25.52(−0.31) 25.09(0.12) 25.52(−0.31) 25.20(0.01) 24.22(0.99) 24.67(0.54) 24.58(0.63) 25.48(−0.27)

512 × 512 Fingerprint
5 36.29 36.27(0.02) 36.28(0.01) 35.29(1.00) 35.82(0.47) 33.35(2.94) 36.02(0.27) 35.28(1.01) 35.20(1.09)

10 32.23 32.10(0.13) 32.20(0.03) 30.97(1.26) 31.74(0.49) 30.61(1.62) 31.95(0.28) 31.76(0.47) 30.97(1.26)
25 27.27 26.98(0.29) 27.22(0.05) 26.56(0.71) 27.26(0.01) 26.03(1.24) 27.04(0.23) 27.10(0.17) 26.95(0.32)
40 25.02 24.68(0.34) 24.96(0.06) 24.75(0.27) 24.98(0.04) 23.92(1.10) 24.79(0.23) 24.82(0.20) 25.01(0.01)
50 24.01 23.67(0.34) 23.94(0.07) 23.84(0.17) 23.95(0.06) 23.00(1.01) 23.77(0.24) 23.78(0.23) 24.07(−0.06)
80 21.99 21.66(0.33) 21.87(0.12) 21.73(0.26) 21.91(0.08) 21.18(0.81) 21.65(0.34) 21.63(0.36) 22.11(−0.12)

100 21.09 20.75(0.34) 20.93(0.16) 20.69(0.40) 21.01(0.08) 20.37(0.72) 20.63(0.46) 20.56(0.53) 21.22(−0.13)

512 × 512 Boat
5 36.74 36.92(−0.18) 36.73(0.01) 36.45(0.29) 36.73(0.01) 33.59(3.15) 36.51(0.23) 36.04(0.70) 36.66(0.08)

10 33.10 33.41(−0.31) 33.08(0.02) 32.97(0.13) 33.19(−0.09) 30.60(2.50) 33.07(0.03) 33.15(−0.05) 33.07(0.03)
25 28.81 29.26(−0.45) 28.75(0.06) 28.98(−0.17) 29.03(−0.22) 27.51(1.30) 28.75(0.06) 29.23(−0.42) 29.10(−0.29)
40 26.72 27.19(−0.47) 26.64(0.08) 26.98(−0.26) 26.99(−0.27) 25.96(0.76) 26.71(0.01) 27.20(−0.48) 27.14(−0.42)
50 25.79 26.25(−0.46) 25.71(0.08) 26.07(−0.28) 26.06(−0.27) 25.18(0.61) 25.78(0.01) 26.23(−0.44) 26.23(−0.44)
80 24.05 24.41(−0.36) 23.92(0.13) 24.29(−0.24) 24.22(−0.17) 23.55(0.50) 23.90(0.15) 24.17(−0.12) 24.41(−0.36)

100 23.27 23.58(−0.31) 23.13(0.14) 23.50(−0.23) 23.39(−0.12) 22.79(0.48) 23.05(0.22) 23.17(0.10) 23.57(−0.30)

literature, the inpainting algorithm in [33] uses iterative thresholding algorithm with gradually decreasing 
threshold values. For a detailed description of the inpainting algorithm using TP-CTF6, see [33]. For image 
inpainting without noise, here we only compare the performance of our TP-CTF↓

6 with three state-of-the-art 
inpainting algorithms: (1) [33] using TP-CTF6 with redundancy rate 102

3 . (2) [26] using a tight frame built 
from the undecimated DCT-Haar wavelet filter which is derived from the discrete cosine transform (DCT) 
with a block size 7 × 7 and has the redundancy rate 49. (3) DNST in [28] using undecimated compactly 
supported nonseparable shearlet frames which has the redundancy rate 49 with 16, 16, 8, 8 high-pass filters 
and one low-pass filter. See [3,26,28,33] for image inpainting and comparison results with other frame-based 
image inpainting algorithms. The inpainting algorithms in [26,28,33] have been generously provided to us 
by their own authors. The numerical results on image inpainting without noise are presented in Table 4.

We now look at the image inpainting problem with i.i.d. Gaussian noise. The image inpainting algorithm 
proposed in [33] using TP-CTF6 not only performs well for image inpainting without noise but is also 
stable and works well for the image inpainting problem with noise. On the other hand, most available image 
inpainting algorithms (e.g., [3,26,28] and references therein) are not stable and barely work well for image 
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Table 3
Comparison results on image denoising, in terms of PSNR values, of several image denoising methods using the same hard thresh-
olding ηhard

λ (c) for all the transforms with λ = 3.6σb for the finest scale and λ = 3σb for all other scales.
σ TP-CTF↓

6 TP-CTF6 TP-CTF3 DT-CWT CurveLab DST DNST ASTF
512 × 512 Barbara

5 36.97 37.60(−0.63) 36.36(0.61) 36.47(0.50) 34.23(2.74) 37.62(−0.65) 37.12(−0.15) 36.15(0.82)
10 33.41 33.94(−0.53) 32.18(1.23) 32.46(0.95) 29.61(3.80) 33.75(−0.34) 33.56(−0.15) 32.56(0.85)
25 28.50 28.71(−0.21) 26.46(2.04) 27.02(1.48) 24.92(3.58) 28.61(−0.11) 28.84(−0.34) 27.83(0.67)
40 25.91 26.05(−0.14) 24.15(1.76) 24.56(1.35) 23.81(2.10) 26.05(−0.14) 26.40(−0.49) 25.50(0.41)
50 24.72 24.85(−0.13) 23.39(1.33) 23.69(1.03) 23.30(1.42) 24.94(−0.22) 25.24(−0.52) 24.37(0.35)
80 22.35 22.89(−0.54) 22.07(0.28) 22.25(0.10) 22.08(0.27) 22.90(−0.55) 22.97(−0.62) 22.50(−0.15)

100 21.44 22.18(−0.74) 21.42(0.02) 21.64(−0.20) 21.42(0.02) 22.12(−0.68) 22.14(−0.70) 21.86( −0.42)

512 × 512 Lena
5 37.48 38.07(−0.59) 37.21(0.27) 37.40(0.08) 35.94(1.54) 38.02(−0.54) 37.91(−0.43) 37.02(0.46)

10 34.64 35.33(−0.69) 34.20(0.44) 34.55(0.09) 33.40(1.24) 34.98(−0.34) 35.25(−0.61) 34.21(0.43)
25 30.55 31.37(−0.82) 30.43(0.12) 30.63(−0.08) 29.98(0.57) 30.85(−0.30) 31.41(−0.86) 30.66(−0.11)
40 28.37 29.30(−0.93) 28.49(−0.12) 28.52(−0.15) 28.00(0.37) 28.71(−0.34) 29.27(−0.90) 28.71(−0.34)
50 27.31 28.33(−1.02) 27.48(−0.17) 27.51(−0.20) 27.01(0.30) 27.73(−0.42) 28.20(−0.89) 27.78(−0.47)
80 24.99 26.24(−1.25) 25.23(−0.24) 25.46(−0.47) 24.83(0.16) 25.68(−0.69) 25.97(−0.98) 25.86(−0.87)

100 23.85 25.25(−1.40) 24.11(−0.26) 24.52(−0.67) 23.82(0.03) 24.76(−0.91) 24.90(−1.05) 24.96(−1.11)

512 × 512 Fingerprint
5 35.19 36.00(−0.81) 34.29(0.90) 34.86(0.33) 33.83(1.36) 35.82(−0.63) 35.27(−0.08) 33.05(2.14)

10 31.02 31.76(−0.74) 30.02(1.00) 30.96(0.06) 30.61(0.41) 31.64(−0.62) 31.44(−0.42) 29.35(1.67)
25 26.42 26.67(−0.25) 26.39(0.03) 26.10(0.32) 25.89(0.53) 26.69(−0.27) 26.62(−0.20) 25.65(0.77)
40 24.24 24.54(−0.30) 24.40(−0.16) 23.84(0.40) 23.61(0.63) 24.48(−0.24) 24.39(−0.15) 23.57(0.67)
50 23.21 23.60(−0.39) 23.27(−0.06) 22.83(0.38) 22.57(0.64) 23.47(−0.26) 23.38(−0.17) 22.60(0.61)
80 21.16 21.57(−0.41) 20.82(0.34) 20.77(0.39) 20.43(0.73) 21.36(−0.20) 21.27(−0.11) 20.61(0.55)

100 20.23 20.57(−0.34) 19.72(0.51) 19.78(0.45) 19.40(0.83) 20.34(−0.11) 20.20(0.03) 19.62(0.61)

512 × 512 Boat
5 35.68 36.42(−0.74) 35.42(0.26) 35.53(0.15) 33.84(1.84) 36.34(−0.66) 36.02(−0.34) 35.02(0.66)

10 32.36 33.16(−0.80) 32.22(0.14) 32.31(0.05) 30.75(1.61) 32.83(−0.47) 32.98(−0.62) 31.96(0.40)
25 28.05 28.90(−0.85) 28.22(−0.17) 28.08(−0.03) 27.47(0.58) 28.44(−0.39) 29.00(−0.95) 28.01(0.04)
40 26.00 26.84(−0.84) 26.23(−0.23) 26.08(−0.08) 25.87(0.13) 26.41(−0.41) 26.97(−0.97) 26.08(−0.08)
50 25.08 25.95(−0.87) 25.33(−0.25) 25.22(−0.14) 25.05(0.03) 25.51(−0.43) 26.03(−0.95) 25.18(−0.10)
80 23.20 24.12(−0.92) 23.44(−0.24) 23.42(−0.22) 23.35(−0.15) 23.74(−0.54) 24.10(−0.90) 23.52(−0.32)

100 22.26 23.27(−1.01) 22.50(−0.24) 22.58(−0.32) 22.50(−0.24) 22.98(−0.72) 23.23(−0.97) 22.78(−0.52)

Table 4
Performance in terms of PSNR values of several image inpainting algorithms without noise. The first two rows for Text 1 and 
Text 2 are for the inpainting masks Text 1 and Text 2 in Fig. 5. The last two rows are for 50% or 80% randomly missing pixels. [33]
uses TP-CTF6 with the redundancy rate 10 2

3 . TP-CTF↓
6 uses the same inpainting algorithm as in [33] but with TP-CTF6 being 

replaced by TP-CTF↓
6 which has the redundancy rate 2 2

3 . [26] uses a tight frame built from the undecimated DCT-Haar wavelet 
filter with redundancy rate 49. [28] uses undecimated compactly supported nonseparable shearlet frames with redundancy rate 49.

TP-CTF↓
6 [33] (TP-CTF6) [26] [28] (DNST) TP-CTF↓

6 [33] (TP-CTF6) [26] [28] (DNST)
512 × 512 Barbara 512 × 512 Lena

Text 1 36.68 36.59(0.09) 35.03(1.65) 35.17(1.51) 37.71 38.02(−0.31) 36.73(0.98) 38.17(−0.46)
Text 2 32.99 32.68(0.31) 31.51(1.48) 32.45(0.54) 33.92 34.31(−0.39) 32.10(1.82) 34.10(−0.18)
50% 35.75 35.73(0.02) 33.85(1.90) 34.13(1.62) 37.68 38.00(−0.32) 37.65(0.03) 36.49(1.19)
80% 28.55 28.16(0.39) 26.39(2.16) 28.22(0.33) 31.99 32.33(−0.34) 30.55(1.44) 31.64(0.35)

512 × 512 Fingerprint 512 × 512 Boat
Text 1 31.87 31.35(0.52) 30.44(1.43) 31.05(0.82) 34.57 34.96(−0.18) 34.62(0.29) 34.66(0.01)
Text 2 28.36 27.78(0.58) 26.11(2.25) 27.17(1.19) 30.39 30.80(−0.31) 30.35(0.13) 30.65(−0.09)
50% 34.19 34.12(0.07) 33.26(0.93) 31.18(3.01) 34.00 34.42(−0.45) 34.08(−0.17) 33.07(−0.22)
80% 26.77 26.00(0.77) 25.72(1.05) 25.38(1.39) 28.03 28.58(−0.55) 27.89(0.14) 28.01(0.02)

inpainting with noise. Similar to image denoising, for image inpainting with noise, though the noise level σ
can be effectively estimated, we assume for simplicity that the noise level σ is known in advance. Such an 
assumption is commonly adopted in the literature. As pointed out in [33], there are no parameters to be 
tuned in the image inpainting algorithm proposed in [33] and the image inpainting without noise is simply 
a special case by taking σ = 0.
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Table 5
Performance in terms of PSNR values for image inpainting with the noise level σ = 10, . . . , 50. TP-CTF↓

6 uses the same inpainting 
algorithm as in [33] by replacing TP-CTF6 with TP-CTF↓

6 .

σ

Text 1 Text 2 50% missing 80% missing

TP-CTF↓
6 [33] (TP-CTF6) TP-CTF↓

6 [33] (TP-CTF6) TP-CTF↓
6 [33] (TP-CTF6) TP-CTF↓

6 [33] (TP-CTF6)
512 × 512 Barbara

10 31.76 31.81(−0.05) 29.99 29.85(0.14) 30.94 31.11(−0.17) 26.56 26.70(−0.14)
20 29.00 28.99(0.01) 27.76 27.71(0.05) 27.94 28.00(−0.06) 24.48 24.70(−0.22)
30 27.21 27.18(0.03) 26.24 26.24(0.00) 25.95 25.95(0.00) 23.18 23.34(−0.16)
40 25.91 25.88(0.03) 25.10 25.14(−0.04) 24.58 24.56(0.02) 22.14 22.45(−0.31)
50 24.91 24.91(0.00) 24.18 24.30(−0.12) 23.59 23.60(−0.01) 21.42 21.90(−0.48)

512 × 512 Lena
10 33.08 33.42(−0.34) 31.32 31.80(−0.48) 32.86 33.40(−0.54) 29.34 30.25(−0.91)
20 30.83 31.26(−0.43) 29.58 30.10(−0.42) 30.19 30.84(−0.65) 27.33 28.36(−1.03)
30 29.32 29.81(−0.49) 28.34 28.89(−0.55) 28.52 29.18(−0.66) 25.94 26.95(−1.01)
40 28.21 28.72(−0.51) 27.37 27.97(−0.60) 27.35 27.98(−0.63) 24.92 25.93(−1.01)
50 27.33 27.85(−0.52) 26.60 27.22(−0.62) 26.39 27.06(−0.67) 24.11 25.15(−1.04)

512 × 512 Fingerprint
10 28.77 28.46(0.31) 26.67 26.24(0.43) 29.09 28.88(0.21) 24.60 24.12(0.48)
20 26.46 26.20(0.26) 25.11 24.72(0.39) 26.10 25.76(0.34) 22.93 22.49(0.54)
30 24.98 24.70(0.28) 23.99 23.59(0.40) 24.43 24.07(0.36) 21.81 21.51(0.30)
40 23.90 23.61(0.29) 23.10 22.72(0.38) 23.10 22.91(0.19) 20.96 20.68(0.28)
50 23.05 22.76(0.29) 22.39 22.00(0.39) 22.39 22.01(0.38) 20.26 19.96(0.30)

512 × 512 Boat
10 30.65 31.04(−0.39) 28.40 28.80(−0.40) 30.11 30.65(−0.54) 26.23 27.08(−0.85)
20 28.40 28.84(−0.44) 26.88 27.32(−0.44) 27.61 28.20(−0.59) 24.76 25.56(−0.80)
30 26.95 27.41(−0.46) 25.79 26.24(−0.45) 26.07 26.66(−0.59) 23.75 24.46(−0.71)
40 25.90 26.38(−0.48) 24.98 25.43(−0.45) 25.01 25.56(−0.55) 23.05 23.60(−0.55)
50 25.11 25.57(−0.46) 24.32 24.80(−0.48) 24.23 24.75(−0.52) 22.41 22.96(−0.55)

As we did for image inpainting without noise, for image inpainting with noise, we not only test the 
performance of the inpainting algorithm in [33] using TP-CTF6 and our modified algorithm using TP-CTF↓

6
but also run the inpainting algorithms in [26] and [28]. However, for the noise levels σ = 10, . . . , 50, the 
inpainting algorithms in [26] and [28] often have significantly lower performance than [33]. For example, for 
the test image of Barbara with inpainting mask Text 1 and with the noise level σ = 50, the performance 
of PNSR values are 24.91, 24.91, 14.66, 14.48 for TP-CTF↓

6, [33] using TP-CTF6, [26,28], respectively. 
This indicates that the inpainting algorithms in [26] and [28] are mainly designed for the image inpainting 
problem without noise. As a consequence, for image inpainting with noise, we do not report the comparison 
results using inpainting algorithms in [26] and [28]. Instead, we only report experimental comparison results 
using TP-CTF↓

6 with the inpainting algorithm in [33] using TP-CTF6 in Table 5.
The experimental results in Tables 4 and 5 show that TP-CTF↓

6 performs as well as TP-CTF6 in [33] for 
image inpainting with or without noise. Both TP-CTF↓

6 and TP-CTF6 often outperform the state-of-the-art 
inpainting algorithms in [26,28].

4.2. Video denoising and video inpainting

For video denoising in three dimensions, the directional tensor product complex tight framelet TP-CTF↓
6

has the redundancy rate 35
7 . We compare the performance of TP-CTF↓

6 with the directional tensor product 
complex tight framelet TP-CTF6 (which has the same directionality as TP-CTF↓

6 but has the redundancy 
rate 295

7 ), TP-CTF3 (which has the same redundancy rate 35
7 as TP-CTF↓

6), the 3D dual tree complex 
wavelet transform (DT-CWT, which has the redundancy rate 8), the 3D nonseparable surfacelets in [29]
(which has the redundancy rate 6.4), the low-redundancy fast curvelet transform (LR-FCT) in [34] (which 
has the redundancy rate 10.29), and the 3D nonseparable compactly supported shearlet frames DNST3D-42
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Table 6
Comparison results, in terms of PSNR values, of several video denoising methods using our proposed 3D directional tensor product 
complex tight framelet TP-CTF↓

6 with the redundancy rate 3 5
7 , 3D tensor product complex tight framelet TP-CTF6 with the 

redundancy rate 29 5
7 (having the same directionality as TP-CTF↓

6), TP-CTF3 with the redundancy rate 3 5
7 (having the same 

redundancy rate as TP-CTF↓
6), the 3D dual tree complex wavelet transform (DT-CWT) with the redundancy rate 8, the 3D non-

separable surfacelets in [29] with the redundancy rate 6.4, the low-redundancy fast curvelet transform in [34] with the redundancy 
rate 10.29, and the 3D nonseparable compactly supported shearlet frames DNST3D-42 and DNST3D

2 -154 with the redundancy rates 
42 and 154, respectively.

σ TP-CTF↓
6 TP-CTF6 TP-CTF3 DT-CWT Surfacelets LR-FCT DNST3D-42 DNST3D-154

192 × 192 × 192 Mobile
10 35.26 35.52(−0.26) 33.40(1.86) 34.11(1.15) 32.79(2.47) 34.13(1.13) 35.27(−0.01) 35.91(−0.65)
20 31.58 31.77(−0.19) 29.90(1.68) 30.53(1.05) 29.95(1.63) 30.58(1.00) 31.32(0.26) 32.18(−0.60)
30 29.52 29.66(−0.14) 28.03(1.51) 28.55(0.97) 28.26(1.26) 28.62(0.91) 29.00(0.52) 29.99(−0.47)
40 28.10 28.20(−0.10) 26.76(1.34) 27.17(0.93) 27.05(1.05) 27.24(0.86) 27.37(0.73) 28.42(−0.32)
50 27.01 27.08(−0.07) 25.79(1.22) 26.15(0.86) 26.11(0.90) 26.16(0.86) 26.13(0.88) 27.22(−0.21)
80 24.82 24.82(0.00) 23.87(0.95) 24.03(0.79) 24.25(0.57) 23.83(1.00) 23.69(1.13) 24.75(0.07)

100 23.87 23.82(0.05) 23.06(0.81) 23.06(0.81) 23.40(0.47) 22.70(1.17) 22.63(1.24) 23.62(0.25)

192 × 192 × 192 Coastguard
10 33.86 34.15(−0.29) 32.59(1.27) 33.16(0.70) 30.86(3.00) 32.56(1.31) 33.13(0.73) 33.81(0.05)
20 30.26 30.62(−0.36) 29.21(1.05) 29.66(0.60) 28.26(2.00) 29.02(1.24) 29.45(0.81) 30.28(−0.02)
30 28.38 28.73(−0.35) 27.46(0.92) 27.82(0.56) 26.87(1.51) 27.18(1.20) 27.50(0.88) 28.40(−0.02)
40 27.13 27.45(−0.32) 26.28(0.85) 26.58(0.53) 25.91(1.21) 25.94(1.18) 26.17(0.96) 27.13(−0.00)
50 26.18 26.48(−0.30) 25.40(0.78) 25.66(0.52) 25.17(1.01) 25.02(1.17) 25.17(1.01) 26.17(0.01)
80 24.30 24.53(−0.23) 23.67(0.63) 23.84(0.46) 23.61(0.69) 23.05(1.25) 23.17(1.13) 24.17(0.13)

100 23.47 23.65(−0.18) 22.91(0.56) 22.98(0.49) 22.87(0.60) 22.08(1.38) 22.24(1.23) 23.22(0.25)

and DNST3D
2 -154 in [28] in ShearLab with DNST3D-42 and DNST3D

2 -154 having the redundancy rates 42
and 154, respectively.

We perform two groups of comparison tests for video denoising with two video sequences: Mobile and 
Coastguard, which are the same test videos as used in the paper [28] and can be downloaded from the 
ShearLab 3D package at http :/ /www .shearlab .org. See Fig. 5 for the first frame of these two videos Mo-
bile and Coastguard. The first group of tests uses the default settings of each software packages for the 
comparison among TP-CTF↓

6, TP-CTF6, TP-CTF3, DT-CWT, Surfacelets, LR-FCT, DNST3D-42, and 
DNST3D

2 -154. The second group of tests uses the same hard thresholding for comparison among TP-CTF↓
6, 

TP-CTF6, TP-CTF3, DT-CWT, and LR-FCT. The experimental results for the first group are reported 
in Table 6 and the results for the second group are reported in Table 7. The comparison results of per-
formance are all under independent identically distributed Gaussian noise with noise standard deviation 
σ = 10, 20, 30, 40, 50, 80, 100.

For the first group of tests, the decomposition level for all tensor product complex tight framelets 
TP-CTFm is set to be J = 4 and the boundary extension size for all TP-CTFm is set to be 16 pixels. 
The strategy for processing frame coefficients for all TP-CTFm and DT-CWT is the same bivariate shrink-
age as outlined in (4.4) but with window size 3 instead of 7. The constant 

√
3 in the bivariate shrinkage 

function in (4.4) for DT-CWT is still set to be 
√

3, but this constant is replaced by 
√

4 for TP-CTFm

(though there are no significant performance differences if the constant 
√

3 is used for TP-CTFm). All 
parameters for 3D surfacelets, LR-FCT, and the two 3D shearlets DNST3D-42 and DNST3D

2 -154 are the 
same as those described in [28,29,34]. The MATLAB routines for Surfacelets, DNST3D-42, and DNST3D

2 -154
are included in the ShearLab 3D package at http :/ /www .shearlab .org. The executable MATLAB program 
(without source MATLAB codes) for LR-FCT can be downloaded from http :/ /jstarck .free .fr /cur3d .html. 
The Surfacelets (4 scales), DNST3D-42 (3 scales), and DNST3D

2 -154 (3 scales) are all using hard thresholding 
ηhard
λ (c) with λ = 4σb for the finest scale while λ = 3σb for all other scales. For LR-FCT (3 scales), it also 

uses hard thresholding ηhard
λ (c) but with λ = 3σb for all scales. Here σb = σ‖b‖2 with σ being the noise 

standard deviation and b being the high-pass filter inducing the coefficient c.
The second group of tests consists of transforms with low redundancy rates and adopts the same hard 

thresholding for all transforms. Here we choose TP-CTF↓
6, TP-CTF6, TP-CTF3, DT-CWT, and LR-FCT 

http://www.shearlab.org
http://www.shearlab.org
http://jstarck.free.fr/cur3d.html
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Table 7
Comparison results using the same hard thresholding for all the transforms, in terms of PSNR values, of several video denoising 
methods: our proposed 3D directional tensor product complex tight framelet TP-CTF↓

6 with the redundancy rate 3 5
7 , 3D tensor 

product complex tight framelet TP-CTF6 with the redundancy rate 29 5
7 (having the same directionality as TP-CTF↓

6), TP-CTF3

with the redundancy rate 3 5
7 (having the same redundancy rate as TP-CTF↓

6), the 3D dual tree complex wavelet transform 
(DT-CWT) with the redundancy rate 8, and the low-redundancy fast curvelet transform LR-FCT in [34] with the redundancy rate 
10.29, respectively.

σ TP-CTF↓
6 TP-CTF6 TP-CTF3 DT-CWT LR-FCT

192 × 192 × 192 Mobile
10 34.84 35.79(−0.95) 32.81(2.03) 34.08(0.76) 34.13(0.71)
20 30.79 31.64(−0.85) 28.90(1.89) 30.01(0.78) 30.58(0.21)
30 28.53 29.25(−0.72) 26.81(1.72) 27.73(0.80) 28.62(−0.09)
40 26.99 27.64(−0.65) 25.44(1.55) 26.23(0.76) 27.24(−0.25)
50 25.87 26.46(−0.59) 24.49(1.38) 25.16(0.71) 26.16(−0.29)
80 23.69 24.19(−0.50) 22.81(0.88) 23.10(0.59) 23.83(−0.14)

100 22.75 23.28(−0.53) 22.08(0.67) 22.18(0.57) 22.70(0.05)

192 × 192 × 192 Coastguard
10 33.07 33.90(−0.83) 31.52(1.55) 32.44(0.63) 32.56(0.51)
20 29.40 30.21(−0.81) 28.08(1.32) 28.75(0.65) 29.02(0.38)
30 27.46 28.25(−0.79) 26.25(1.21) 26.86(0.60) 27.18(0.28)
40 26.16 26.95(−0.79) 25.04(1.12) 25.63(0.53) 25.94(0.22)
50 25.18 25.98(−0.80) 24.14(1.04) 24.73(0.45) 25.02(0.16)
80 23.24 24.05(−0.81) 22.48(0.76) 22.93(0.31) 23.05(0.19)

100 22.38 23.19(−0.81) 21.80(0.58) 22.08(0.30) 22.08(0.30)

for comparison, since all of them have relatively small redundancy rates in dimension three. All the settings 
in Table 7 are exactly the same as those in Table 6 for the first group of tests except that all the thresholding 
methods are now replaced by the hard thresholding ηhard

λ (c): λ = 3.6σb for the finest scale while λ = 3σb for 
all other scales. The only exception is LR-FCT, where λ = 3σb is used across all scales by default, due to 
the fact that the source MATLAB code for LR-FCT is not available for us to change λ = 3σb into λ = 3.6σb

for the finest scale for LR-FCT.
From Table 6, we see that the loss of performance of TP-CTF↓

6 is not significant in comparison with 
TP-CTF6 for both Mobile and Coastguard. TP-CTF↓

6 can outperform DNST3D
2 -154 when the noise level 

σ is high (σ > 50) despite the fact that DNST3D
2 -154 has the highest redundancy rate 154 which is 41.5

times the redundancy rate of TP-CTF↓
6. Generally, TP-CTF↓

6 outperforms all other methods (excluding 
TP-CTF6) for any noise level σ (except a slightly worse performance at σ = 10 comparing with DNST3D-42
for Mobile). Significant improvement can be seen in comparison with the nonseparable 3D surfacelets in [29]
(up to 2.47 dB for Mobile and 3 dB for Coastguard), the low-redundancy fast curvelet transform (LR-FCT) 
in [34] (up to 1.17 dB for Mobile and 1.38 dB for Coastguard), and DNST3D-42 in [28] (up to 1.24 dB for 
Mobile and 1.23 dB for Coastguard).

From Table 7 using the same hard thresholding strategy, we see that the loss of performance of TP-CTF↓
6

is again not that significant in comparison with TP-CTF6 for both Mobile and Coastguard. TP-CTF↓
6

outperforms TP-CTF3 and DT-CWT for both videos while for the video coastguard, TP-CTF↓
6 outperforms 

TP-CTF3, DT-CWT, and LR-FCT. For the comparison between TP-CTF↓
6 and LR-FCT for the video 

Mobile, we see that the performance of these two methods are very close: When the noise level is low 
σ < 30, TP-CTF↓

6 performs better than LR-FCT while LR-FCT has better performance when the noise 
level is high. However, the redundancy rate of LR-FCT is 2.77 times that of TP-CTF↓

6 in dimension three.
For video inpainting, we use the same inpainting algorithm as developed in [33] but with 2D tensor product 

complex tight framelet TP-CTF6 and TP-CTF↓
6 being replaced by 3D tensor product complex tight framelet 

TP-CTF6 and TP-CTF↓
6, respectively. We compare the performance of TP-CTF↓

6 with surfacelets in [29]
and 3D nonseparable compactly supported shearlet frames DNST3D-42 and DNST3D-154 in ShearLab 3D 
package. The numerical results on video inpainting are presented in Table 8.

From Table 8, we see that the loss of performance of TP-CTF↓
6 is acceptable in comparison with TP-CTF6

for both Mobile and Coastguard in view of the redundancy rate of TP-CTF↓
6. Surfacelets do not perform well 
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Table 8
Performance in terms of PSNR values of several video inpainting algorithms. Gaussian noise with noise levels are taken to be 
σ = 0, 10, 30, where σ = 0 means no noise. 50% and 80% are experiments with 50% and 80% randomly missing pixels, respectively. 
Comparisons are among 3D tensor product complex tight framelet TP-CTF↓

6 with the redundancy rate 3 5
7 , 3D tensor product 

complex tight framelet TP-CTF6 with the redundancy rate 29 5
7 (having the same directionality as TP-CTF↓

6), the 3D nonseparable 
surfacelets in [29] with the redundancy rate 6.4, the 3D nonseparable compactly supported shearlet frame DNST3D-42 with the 
redundancy rates 42. the 3D nonseparable compactly supported shearlet frame DNST3D-154 with the redundancy rates 154. The 
masks for inpainting are 50% or 80% uniformly randomly missing pixels.

σ TP-CTF↓
6 TP-CTF6 Surfacelets DNST3D-42 DNST3D-154

192 × 192 × 192 Mobile (50% missing)
0 41.15 41.74(−0.59) 32.09(9.06) 39.54(1.61) 40.71(0.44)

10 32.65 33.09(−0.44) 24.70(7.95) 28.94(3.71) 29.20(3.45)
30 27.56 27.87(−0.31) 16.35(11.21) 20.08(7.48) 20.35(7.21)

192 × 192 × 192 Mobile (80% missing)
0 28.22 28.61(−0.39) 22.27(5.95) 31.09(−2.87) 33.21(−4.99)

10 27.32 27.84(−0.52) 20.47(6.85) 27.60(−0.28) 28.45(−1.13)
30 22.89 23.53(−0.64) 15.81(7.08) 21.27(1.62) 21.60(1.29)

192 × 192 × 192 Coastguard (50% missing)
0 37.19 37.75(−0.56) 28.67(8.52) 35.74(1.45) 36.69(0.50)

10 30.88 31.48(−0.60) 23.61(7.27) 28.17(2.71) 28.51(2.37)
30 26.59 27.15(−0.56) 16.13(10.46) 19.92(6.67) 20.17(6.42)

192 × 192 × 192 Coastguard (80% missing)
0 26.63 27.41(−0.78) 20.96(5.67) 28.56(−1.93) 30.02(−3.39)

10 26.07 26.67(−0.60) 19.73(6.34) 26.18(−0.11) 26.92(−0.85)
30 22.68 23.29(−0.61) 15.81(6.87) 20.87(1.81) 21.10(1.58)

in the inpainting tests even though its redundancy rate is about twice of that of TP-CTF↓
6. When the missing 

pixels are 50%, TP-CTF↓
6 outperforms DNST3D-42 and DNST3D-154, especially when the noise level is high 

(σ = 30). When the missing pixels are 80%, DNST3D-42 and DNST3D-154 have better performance with 
low noise level (σ = 0, 10) comparing to TP-CTF↓

6. However, when the noise level is high (σ = 30), they no 
longer produce good results as TP-CTF↓

6 probably due to the reason that DNST3D employs undecimated 
transforms.

In summary, in this paper we proposed a family of directional tensor product complex tight framelets 
TP-CTF↓

m with low redundancy rates. In particular, we constructed a directional tensor product complex 
tight framelet TP-CTF↓

6 (as well as TP-CTF↓
5) with low redundancy such that it performs nearly as well 

as the original TP-CTF6 for image/video denoising/inpainting but it has significantly lower redundancy 
rates than TP-CTF6 in every dimension. The proposed directional tensor product complex tight framelet 
TP-CTF↓

6 with low redundancy often performs better than other directional representation systems when an 
image or video is texture-rich, while it performs comparably with other directional representation systems 
for most other types of images and videos with significantly low redundancy rate of TP-CTF↓

6 in comparison 
with many other separable or nonseparable systems.
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