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1. Introduction and motivation

In the era of information technologies, the rapid development of modern high-tech devices, for example, 
a super computer, PC, smart phone, wearable and VR/AR device, is driven internally by Moore’s Law [55]
which contributes to the exponential growth of the computational power, while externally stimulated by 
the tremendous need of both the public and individual parties in processing massive data from finance, 
economy, geology, bio-information, cosmology, medical sciences and so on. It has been noticed that Moore’s 
Law is slowing down due to the constrains of physical laws [19] but the volume of data is dramatically 
increasing. Dealing with Big Data is becoming a crucial part of an individual person, party, government 
and country.

Real-world data often inherit high-dimensionality such as data from a surveillance system, seismology, 
climatology. High-dimensional data are typically concentrated on a low-dimensional manifold [60,67], for 
instance, the sphere in remote sensing and CMB data [6], more complex surfaces in brain imaging [68], and 
discrete graph data from social and traffic networks [61]. Analysis and learning tools on manifolds hence 
play an increasingly important role in machine learning and statistics.

The key to successful manifold learning lies in that data on a manifold may exhibit high complexity in 
one way while in other way they are highly sparse at a certain domain via an appropriate multiscale rep-
resentation system. Sparsity within such representations, stemming from computational harmonic analysis, 
enables efficient analysis and processing of high-dimensional and massive data.

Multiresolution analysis in general are designed for data in the Euclidean space Rd, d ≥ 1, for example, a 
signal in R, an image in R2 and a video in R3. Multiscale representation systems in Rd including wavelets, 
framelets, curvelets, shearlets, etc., which are capable of capturing the sparsity of data, have been well-
developed and widely used, see e.g. [7,11,14,17,21,49,50]. The core of the classical framelet (and wavelet) 
construction relies on the extension principles such as unitary extension principle (UEP) [59], oblique exten-
sion principle (OEP) and mixed extension principle (MEP) [22]. The extension principles associate framelet 
systems with filter banks, which enables fast algorithmic realizations for the framelet transforms and appli-
cations, see e.g. [22,36,49]. The fast algorithms that include the filter bank decomposition and reconstruction 
of a representation system which uses convolution and FFT achieve computational complexity in proportion 
to the size of the input data (up to a log factor).

Different from on Euclidean domains, multiscale representation systems and their corresponding fast 
algorithmic realizations on a general compact manifold are less studied. One of the reasons is that operators 
of translation and dilation for classical wavelet and framelet systems in Rd can not be in parallel extended 
to general manifolds. We have to look for alternative approaches. One possible approach is based on the 
central idea behind wavelet analysis on Rd: the time domain operators have their equivalences in the Fourier 
domain. The tight framelet construction on a mainfold of this paper, which uses orthogonal polynomials 
and localized kernels, is closely related to this approach. The main idea is that a sequence of orthogonal 
polynomials plays the role of a Fourier basis and can be used to define a localized kernel from which 
“translation” as well as “dilation” can be obtained. Such an approach can be seen in Fischer, Mhaskar and 
Prestin in [28,54], where they show that wavelets or polynomial frames can be extended to general domains 
including intervals and spheres. Coifman, Maggioni, Mhaskar and Dong [18,25,48,52] consider more general 
cases, for which diffusion wavelets, diffusion polynomial frames and wavelet tight frames on manifolds and 
graphs are constructed.

Besides orthogonal polynomials and localized kernels on M, our characterization and construction of 
tight framelets on M also rely on (nonhomogeneous) affine systems

ASJ({ϕ;ψ1, . . . , ψr}) = {ϕJ,k : k ∈ IJ} ∪ {ψn
j,k : k ∈ Jj , n = 1, . . . , r, j ≥ J}, J ∈ Z,
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Fig. 1. One-level framelet filter bank decomposition and reconstruction based on a filter bank {a; b1, . . . , br} at scale j. Here the 
filters bn range over n = 1, . . . , r and the node +r sums over the low-pass filtered coefficient sequence and all r high-pass filtered 
coefficient sequences.

where {ϕ; ψ1, . . . , ψn} is a set of generators and the subscripts j and k encode certain “dilation” and 
“translation” information with Ij , Jj being the index sets at scale j. In the classical wavelet analysis, the 
wavelets or framelets ϕj,k := 2j/2ϕ(2j · −k) and ψn

j,k := 2j/2ψn(2j · −k), k ∈ Z, are defined by dilations 
and translations associated with a set {ϕ; ψ1, . . . , ψr} of generators in L2(R). One of the fundamental 
problems in classical wavelet analysis is to construct an affine system ASJ({ϕ; ψ1, . . . , ψr}) that will form 
an orthonormal basis, a Riesz basis or a frame for L2(R). In the frame theory, such a system is called a 
framelet system, the elements of which are called framelets. Tight framelets refer to elements of a framelet 
system with equal frame lower and upper bounds. See [21,22].

The construction of affine systems of wavelets in Rd has been studied in [59]. Sequences of affine systems 
are studied in [34,35] and later extended to affine shear systems in [37,74,75]. Han [34,35] shows that the 
sequences of affine systems are of fundamental importance in the analysis and construction of framelet 
systems, for example, in the MRA, the filter bank structure and the extension principles [15,22,59]. More 
discussions refer to [15,22,34,35,37,59,75] and references therein. Adopting the framework of sequences of 
affine systems [34,35] and the approach of orthogonal polynomials in [25,28,54], we show that a sequence of 
tight frames for L2(M), called continuous tight framelet (system) CFSJ(Ψ; M), can be constructed based 
on a framelet generating set Ψ = {α; β1, . . . , βr} on R and an orthonormal eigen-pair {(λ�, u�)}∞�=0 on M. 
See Section 2.1 for details.

For computation and application, we discretize the continuous tight framelets by using a sequence of 
polynomial-exact quadrature rules Q := {QNj

}j≥J on M. This leads to a simple approach of constructing 
semi-discrete tight framelets FSJ(Ψ, Q; M) for L2(M). We show that if the framelet generating set Ψ =
{α; β1, . . . , βr} is associated with a filter bank η = {a; b1, . . . , br}, see (2.1), the characterization conditions 
of η for the tightness of semi-discrete framelets on M are greatly simplified, which facilitates the design 
and application of the tight framelets.

By exploiting the refinement structure for the filters in (2.1) and the properties of the tight frame 
FSJ(Ψ, Q; M), we can design the framelet filter bank decomposition algorithm and the framelet filter bank 
reconstruction algorithm, where the decomposition uses (discrete) convolutions with filters in the filter bank 
η and downsampling operations, and the reconstruction uses convolutions and upsampling operations. Fig. 1
depicts one-level decomposition and reconstruction at scale j. Since (discrete) convolution is equivalent with 
discrete Fourier transforms on M, the decomposition and reconstruction can be implemented fast using fast 
discrete Fourier transforms (FFTs) on M. We then call the decomposition and reconstruction fast framelet 
filter bank transforms (FMTs). The (multi-level) FMT algorithms are recursive one-level framelet filter 
bank transforms, see Section 3 for details. The FMTs provide a tool for efficient multiscale data analysis 
on M.

Before we proceed to detail the construction of continuous and semi-discrete tight framelets on M and 
their discretization in Section 2, we state the major contributions of the paper in the following aspects.

(1) Sequences of framelet systems on a manifold. Most of literature on frames and tight frames on manifolds 
only consider a fixed system FS0(Ψ, Q; M) with only two framelet generators, i.e. Ψ = {α; β}, see 
e.g. [48,51,57]. As far as we are concerned, there is no literature on the investigation of a sequence 
{FSJ(Ψ, Q; M) : J ≥ J0} of framelet systems on a compact Riemannian manifold M for some J0 ∈ Z



Y.G. Wang, X. Zhuang / Appl. Comput. Harmon. Anal. 48 (2020) 64–95 67
and for Ψ = {α; β1, . . . , βr} with multiple framelet generators. In this paper, we introduce sequences 
of framelet systems on a manifold and provide a complete characterization (equivalence conditions) of 
a sequence of framelet systems to be a sequence of tight frames in L2(M), which greatly simplifies 
the construction of tight framelets on M. Moreover, with the flexible number of framelet generators, 
one can separate the “frequency domain” in a more careful way that enables more sophisticated data 
analysis on different “frequency” ranges (see Examples 4.1 and 4.3), which are important in application 
such as denoising or inpainting on a manifold.

(2) MRA structure and filter banks association. From the equivalence relations in Theorem 2.4, a sequence of 
tight frames for L2(M) has a multiresolution (MRA) structure for L2(M). The MRA structure is then 
naturally associated with a filter bank, which helps to design a fast realization of the framelet transforms 
on M. We should point out that the papers [18,46,48,52] focus on the characterization with respect to 
Ψ = {α; β} and with no filter bank association. Dong [25] considers CFS0(Ψ; M) with FIR (finite impulse 
response) filter banks whose masks have fully supported Fourier series, which makes it impossible to 
involve polynomial-exact quadrature rules on M for discretization. In the paper, we provide a complete 
characterization of a sequence of tight framelets for L2(M) in terms of the associated filter bank in 
both the FIR and IIR (infinite impulse response or bandlimited) cases, and also demonstrate that using 
bandlimited filter banks enables the discretization of the continuous framelets via polynomial-exact 
quadrature rules and the efficient implementation of the framelet filter bank transforms.

(3) Unitary extension principle and quadrature rules on a manifold. The equivalence conditions of (iv) and 
(v) in Theorem 2.4 for a sequence of tight framelets in L2(M) in terms of the associated framelet 
generators Ψ = {α; β1, . . . , βr} and the associated filter bank η = {a; b1, . . . , br} provide a new unitary 
extension principle (UEP) for L2(M), which is a non-trivial generalization of classical unitary extension 
principle [22,59] for L2(R). The conditions (2.29) and (2.31) are new as far as we are concerned. These 
two characterizations not only simplify the construction of tight framelets for L2(M), but also give 
the connection of tight framelets with the quadrature rules for numerical integration on a compact 
Riemannian manifold.

(4) Fast framelet filter bank transforms on manifolds. The fast algorithmic realization for framelet filter 
bank transforms on a general compact Riemannian manifold is new as far as we are concerned. Assum-
ing FFT on M, which holds for many important manifolds including torus, sphere and Grassmannian, 
we demonstrate that the fast framelet transforms on a manifold proposed in this paper have (up to a log 
factor) the linear computational complexity and the low redundancy rate (or the low data complexity). 
The computational complexity and the redundancy rate are both in proportion to the size of the input 
data, and are independent of the decomposition level. We remark that we focus on fast algorithms on 
smooth manifolds rather than on graphs, which is another important problem to explore. A smooth 
manifold and a graph have a fundamental difference although the latter can be embedded into a smooth 
Riemannian manifold: a smooth manifold has nice geometric properties with explicitly known form of 
orthonormal systems which can be exploited for the design of fast discrete Fourier transforms; a graph 
only has topological structure (see e.g. [62]) and the analysis heavily relies on the spectral graph theory 
[16]. Dong [25] and Hammond et al. [33] studied the algorithms of wavelet transforms (WFTG and 
SGWT) for graph data based on spectral graph theory. However, as their transforms have no down-
sampling process, the redundancy rate and the computational complexity increase exponentially with 
respect to the decomposition level.

The remaining of the paper is organized as follows. In Section 2, we provide complete characterizations 
for a sequence of framelet systems to be a sequence of tight frames in L2(M) in both the continuous 
and semi-discrete scenarios. We show that polynomial-exact quadrature rules on M give a simple way of 
constructing semi-discrete tight framelets in L2(M). In Section 3, for tight framelets associated with a filter 
bank and a sequence of polynomial-exact quadrature rules on M, we describe the multi-level framelet filter 
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bank decomposition and reconstruction algorithms. We give fast framelet filter bank transforms (FMTs) 
with nearly linear computational complexity and low redundancy rate based on the fast algorithms for 
discrete Fourier transforms (FFTs) on M. In Section 4.1 we construct framelets on the sphere S2 with two 
high passes (b1 and b2). Section 4.2 gives numerical examples for the FMT algorithms on S2 using the 
nonequispaced fast spherical Fourier transform (NFSFT) of Keiner, Kunis and Potts [42]. Final remarks are 
given in the last section.

2. Tight framelets on manifolds

In this section, we give a complete characterization for a sequence of framelet systems to be a sequence of 
continuous tight framelets for L2(M) and show that the discretization of continuous tight framelets using 
quadrature rules can achieve semi-discrete tight framelets for L2(M).

Throughout the paper, we assume that the manifold M has the following properties.

(1) The manifold M is a d-dimensional compact, connected, and smooth Riemannian manifold with smooth 
boundary (possibly empty) for d ≥ 2 equipped with a probability measure μ (μ(M) = 1). The space 
L2(M) := L2(M, μ) is the space of complex-valued square integrable functions on M with respect to 

μ endowed with the L2-norm ‖f‖L2(M) :=
(∫

M |f(x)|2dμ(x)
)1/2 for f ∈ L2(M). Note that L2(M) is 

a Hilbert space with inner product 〈f, g〉 := 〈f, g〉L2(M) :=
∫
M f(x)g(x)dμ(x), f, g ∈ L2(M), where g

is the complex conjugate to g.
(2) {u�}∞�=0 and {λ�}∞�=0 are two sequences. The sequence {u�}∞�=0 ⊂ L2(M) is an orthonormal basis for 

L2(M) with u0 ≡ 1; i.e. 〈u�, u�′〉 = δ�,�′ , where δ�,�′ is the Kronecker delta with δ�,�′ = 1 if � = �′ and 0
otherwise, and the sequence {λ�}∞�=0 ⊂ R is a nondecreasing sequence of nonnegative numbers satisfying 
0 = λ0 ≤ λ1 ≤ · · · and lim�→∞ λ� = ∞. The sequence {(u�, λ�)}∞�=0 is said to be an orthonormal 
eigen-pair for L2(M). A typical example of {(u�, λ�)}∞�=0 is the set of pairs of the eigenfunctions and 
eigenvalues of the Laplace–Beltrami operator Δ on M satisfying Δu� = −λ2

�u� for � ∈ N0 := N ∪ {0}.

Since {(u�, λ�)}∞�=0 is an orthonormal eigen-pair for L2(M), the (generalized) Fourier coefficients f̂�, 
� ∈ N0 of a function f ∈ L2(M) can be defined to be f̂� := 〈f, u�〉, � ∈ N0. Then any function f ∈ L2(M)
has the Fourier expansion f =

∑∞
�=0 f̂�u� in L2(M) and Parseval’s identity ‖f‖2

L2(M) =
∑∞

�=0 |f̂�|2 holds.
To construct framelets on M, we let

Ψ := {α;β1, . . . , βr} ⊂ L1(R),

a set of generating functions, or (framelet) generators, where L1(R) is the space of absolutely integrable 
functions on R with respect to the Lebesgue measure. The Fourier transform γ̂ of a function γ ∈ L1(R) is 
γ̂(ξ) :=

∫
R
γ(t)e−2πitξ dt, ξ ∈ R (with abuse of notation). The Fourier transform on L1(R) can be naturally 

extended to the L2-space L2(R) of square integrable functions on R. As wavelets and framelets in Rd, the 
set of generators Ψ is associated with a (framelet) filter bank

η := {a; b1, . . . , br} ⊂ l1(Z) := {h = {hk}k∈Z ⊂ C :
∑
k∈Z

|hk| < ∞}

by the following relation:

α̂(2ξ) = â(ξ)α̂(ξ), β̂n(2ξ) = b̂n(ξ)α̂(ξ), n = 1, . . . , r, ξ ∈ R, (2.1)

where for a filter (or mask) h = {hk}k∈Z ⊂ C, the Fourier series ĥ is defined to be the 1-periodic function 
ĥ(ξ) :=

∑
hke

−2πikξ, ξ ∈ R. Again, we abuse the “hat” notation, but one can easily tell the difference of 
k∈Z
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Fourier coefficients f̂�, Fourier transform γ̂ and Fourier series ĥ from the context. The first equation in (2.1)
is said to be the refinement equation with α being the refinable function associated with the refinement 
mask a (or low-pass filter in electrical engineering). The functions βn are framelet generators associated 
with framelet masks (or high-pass filters) bn, n = 1, . . . , r, which can be derived via extension principles 
[22,59].

In this paper, the symbols f, g, u, q, ϕ, ψ are reserved for functions defined on M, the symbols α, β, γ
are for functions on R, the symbols a, b, h are for filters (masks), and v, w in Section 3 are for framelet 
coefficient sequences.

2.1. Continuous framelets

In this subsection, we define continuous framelet systems and give some equivalence conditions of a 
sequence of continuous framelet systems to be a sequence of tight frames in L2(M).

Maggioni and Mhaskar [48, Theorem 4.1] proved that when the associated filter function γ has regularity 
depending on some constant s1, s2 > 0, the kernel

Kγ,N (x,y) :=
∞∑
�=0

γ

(
λ�

N

)
u�(y)u�(x) (2.2)

is well-localized:

|Kγ,N (x,y)| ≤ c Ns1

max{1, (Nρ(x,y))s2} , (2.3)

where s1, s2 satisfying 0 < s1 < s2, the constant c depends only on γ and the manifold M itself, and 
ρ : M ×M → R is a quasi-metric on M. The inequality (2.3) means that the kernel Kγ,N (·, y) is localized 
around a fixed y ∈ M as a function of the first argument: the larger N , the more concentrated Kγ,N(·, y)
around y. This localized kernel in (2.2) can then be used to define “dilation” and “translation” of a function 
on M.

For j ∈ Z and x, y ∈ M, the continuous framelet elements ϕj,y(x) and ψn
j,y(x) on M at scale j are the 

filtered Bessel kernels (or summability kernels, reproducing kernels, Mercer kernels, see e.g. [9,48,73]), given 
by

ϕj,y(x) :=Kα̂,2j (x,y) =
∞∑
�=0

α̂

(
λ�

2j

)
u�(y)u�(x),

ψn
j,y(x) :=K

β̂n,2j (x,y) =
∞∑
�=0

β̂n

(
λ�

2j

)
u�(y)u�(x), n = 1, . . . , r.

(2.4)

The framelet elements ϕj,y(x) and ψn
j,y(x) correspond to the “dilation” operation at scale j and the 

“translation” at a point y ∈ M of wavelets in Rd. The continuous framelet system CFSJ(Ψ) := CFSJ(Ψ; M)
on M (starting at a scale J ∈ Z) is then a (nonhomogeneous) affine system [34,35] given by

CFSJ(Ψ) = CFSJ({α;β1, . . . , βr}) := {ϕJ,y : y ∈ M} ∪ {ψ1
j,y, . . . ,ψ

r
j,y : y ∈ M, j ≥ J}. (2.5)

The continuous framelet system CFSJ(Ψ) is said to be a (continuous) tight frame for L2(M) if CFSJ(Ψ) ⊂
L2(M) and if, in L2-sense,

f =
∫ 〈

f,ϕJ,y

〉
ϕJ,ydμ(y) +

∞∑
j=J

r∑
n=1

∫ 〈
f,ψn

j,y

〉
ψn

j,ydμ(y) ∀f ∈ L2(M), (2.6)

M M



70 Y.G. Wang, X. Zhuang / Appl. Comput. Harmon. Anal. 48 (2020) 64–95
or equivalently,

‖f‖2
L2(M) =

∫
M

∣∣〈f,ϕJ,y

〉∣∣2dμ(y) +
∞∑
j=J

r∑
n=1

∫
M

∣∣〈f,ψn
j,y

〉∣∣2dμ(y) ∀f ∈ L2(M). (2.7)

The elements in CFSJ(Ψ) are said to be (continuous) tight framelets for L2(M). We also say CFSJ(Ψ)
(continuous) tight framelets if no confusion arises, similar to the treatment for “classical wavelets”, see 
[21,22].

The following theorem gives equivalence conditions of a sequence {CFSJ(Ψ)}∞J=J0
of continuous framelet 

systems in (2.5) to be a sequence of tight frames for L2(M).

Theorem 2.1. Let J0 ∈ Z be an integer and Ψ := {α; β1, . . . , βr} ⊂ L1(R) with r ≥ 1 be a set of framelet 
generators associated with a filter bank η := {a; b1, . . . , br} ⊂ l1(Z) satisfying (2.1). Define continuous 
framelet system CFSJ(Ψ), J ≥ J0 as in (2.5) with framelets ϕj,y and ψn

j,y in (2.4). Suppose ϕj,y and ψn
j,y

are functions in L2(M) for all y ∈ M, n = 1, . . . , r, and j ≥ J0. Then, the following statements are 
equivalent.

(i) The continuous framelet system CFSJ(Ψ) is a tight frame for L2(M) for all J ≥ J0, i.e. (2.6) holds 
for all J ≥ J0.

(ii) For all f ∈ L2(M), the following identities hold:

lim
j→∞

∥∥∥∥∥∥
∫
M

〈
f,ϕj,y

〉
ϕj,y dμ(y) − f

∥∥∥∥∥∥
L2(M)

= 0, (2.8)

∫
M

〈
f,ϕj+1,y

〉
ϕj+1,y dμ(y) =

∫
M

〈
f,ϕj,y

〉
ϕj,y dμ(y) +

∫
M

r∑
n=1

〈
f,ψn

j,y

〉
ψn

j,y dμ(y), j ≥ J0. (2.9)

(iii) For all f ∈ L2(M), the following identities hold:

lim
j→∞

∫
M

∣∣〈f,ϕj,y

〉∣∣2 dμ(y) = ‖f‖2
L2(M), (2.10)

∫
M

∣∣〈f,ϕj+1,y
〉∣∣2 dμ(y) =

∫
M

∣∣〈f,ϕj,y

〉∣∣2 dμ(y) +
∫
M

r∑
n=1

∣∣〈f,ψn
j,y

〉∣∣2 dμ(y), j ≥ J0. (2.11)

(iv) The generators in Ψ satisfy

lim
j→∞

∣∣∣α̂(
λ�

2j

) ∣∣∣ = 1, � ≥ 0. (2.12)∣∣∣∣α̂(
λ�

2j+1

)∣∣∣∣2 =
∣∣∣∣α̂(

λ�

2j

)∣∣∣∣2 +
r∑

n=1

∣∣∣∣β̂n

(
λ�

2j

)∣∣∣∣2 , � ≥ 0, j ≥ J0. (2.13)

(v) The refinable function α satisfies (2.12) and the filters in the filter bank η satisfy

∣∣∣∣â(λ�

2j

)∣∣∣∣2 +
r∑

n=1

∣∣∣∣b̂n (λ�

2j

)∣∣∣∣2 = 1 ∀� ∈ σj
α :=

{
� ∈ N0 : α̂

(
λ�

2j

)
�= 0

}
and ∀j ≥ J0 + 1. (2.14)
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Proof. (i)⇐⇒(ii). We define projections PVj
, PWn

j
, n = 1, . . . , r as

PVj
(f) :=

∫
M

〈
f,ϕj,y

〉
ϕj,y dμ(y), PWn

j
(f) :=

∫
M

〈
f,ψn

j,y

〉
ψn

j,y dμ(y), f ∈ L2(M). (2.15)

Since CFSJ(Ψ) is a tight frame for L2(M) for all J ≥ J0,

f = PVJ
(f) +

∞∑
j=J

r∑
n=1

PWn
j
(f) = PVJ+1(f) +

∞∑
j=J+1

r∑
n=1

PWn
j
(f)

for all f ∈ L2(M) and for all J ≥ J0. Thus, for J ≥ J0, in L2 sense,

PVJ+1(f) = PVJ
(f) +

r∑
n=1

PWn
J
(f), (2.16)

which shows (2.9). Then, recursively using (2.16) gives

PVm+1(f) = PVJ
(f) +

m∑
j=J

r∑
n=1

PWn
j
(f) (2.17)

for all m ≥ J and J ≥ J0. Now forcing m → ∞ gives, in L2 sense,

lim
m→∞

PVm+1(f) = PVJ
(f) +

∞∑
j=J

r∑
n=1

PWn
J
(f) = f,

which is (2.8). Consequently, (i)=⇒(ii). Conversely, by (2.9), follows (2.17). Forcing m → ∞ in (2.17)
together with (2.8) gives (2.6). Thus, (ii)=⇒(i).

(ii)⇐⇒(iii). The equivalence between (ii) and (iii) follows from the polarization identity.
(ii)⇐⇒(iv). By (2.4) and the orthonormality of u�, we obtain

〈
f,ϕj,y

〉
=

∞∑
�=0

α̂

(
λ�

2j

)
f̂� u�(y),

〈
f,ψn

j,y

〉
=

∞∑
�=0

β̂n

(
λ�

2j

)
f̂� u�(y).

This together with (2.15) and (2.4) gives, for j ≥ J0 and n = 1, . . . , r, the Fourier coefficients for the 
projections PVj

(f) and PWn
j
(f):

̂(
PVj

(f)
)
�
=

∣∣∣∣α̂(
λ�

2j

)∣∣∣∣2 f̂�, ̂(
PWn

j
(f)

)
�
=

∣∣∣∣β̂n

(
λ�

2j

)∣∣∣∣2 f̂�, � ∈ N0, (2.18)

which implies that (2.9) is equivalent to (2.13) by the Riesz–Fisher theorem. On the other hand, by (2.18)
and Parseval’s identity, we obtain

∥∥PVj
(f) − f

∥∥2
L2(M) =

∞∑
�=0

(∣∣∣∣α̂(
λ�

2j

)∣∣∣∣2 − 1
)2

|f̂�|2. (2.19)

When the left-hand side of (2.19) tends to zero as j → ∞, every term in the sum of the right-hand side 
in (2.19) must tend to zero as j → ∞; i.e. limj→∞ α̂(2−jλ�) = 1 for each � ≥ 0. Thus, (2.8)=⇒(2.12). 
Conversely, by the continuity of α̂ at zero and Lebesgue’s dominated convergence theorem, we see that if 
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limj→∞ α̂(2−jλ�) = 1 for each � ≥ 0, then limj→∞
∥∥PVj

(f) − f
∥∥2
L2(M) = 0. This shows (2.12)=⇒(2.8). 

Thus, (ii)⇐⇒(iv).
(iv)⇐⇒(v). By the relation in (2.1), it can be obtained that for � ≥ 0 and j ≥ J0,

∣∣∣∣α̂(
λ�

2j

)∣∣∣∣2 +
r∑

n=1

∣∣∣∣β̂n

(
λ�

2j

)∣∣∣∣2 =
(∣∣∣∣â( λ�

2j+1

)∣∣∣∣2 +
r∑

n=1

∣∣∣∣b̂n ( λ�

2j+1

)∣∣∣∣2
)∣∣∣∣α̂(

λ�

2j+1

)∣∣∣∣2 .
This shows that (2.13) is equivalent to (2.14). Therefore, (iv)⇐⇒(v). �
Remark. Tightness of CFSJ(Ψ) is usually proved for a fixed J under some sufficient conditions that imply 
but are not equivalent to item (iv) or (v) of Theorem 2.1, see [54, Theorem 3] for the case r = 1 and J = 0
with no filter bank association, and [25, Theorem 2.1] for the case of J = 0 and r ≥ 1 with filter bank 
association. The characterization in Theorem 2.1 gives a full picture of the relationship among the tightness 
of a sequence of framelet systems CFSJ(Ψ), J ≥ J0, the framelet generating set Ψ and the filter bank η. 
They are the counterparts of classical tight framelets in Rd, see [34,35].

Remark. The statements (iv) and (v) in Theorem 2.1 show that the tightness of continuous framelet system 
CFSJ(Ψ) can be reduced to a simple identity in (2.13) or (2.14), where (2.13) holds for any classical tight 
frame generated by Ψ for L2(R) and (2.14) holds for any filter bank with the perfect reconstruction property. 
This simplifies the construction of continuous tight frames on the manifold M. On the other hand, the 
condition of (2.14) is weaker than that for L2(R) as we do not require the downsampling condition for the 
filter bank, see e.g. [22,59]. A direct consequence is that the conditions (iv) and (v) in Theorem 2.1 can be 
easily satisfied by frequency splitting techniques when only generators or filters of bandlimited functions 
are needed, see [36,37] and the remarks following Theorem 2.4 in Subsection 2.2.

In Theorem 2.1, the condition that ϕj,y and ψn
j,y in (2.4) are functions in L2(M) is automatically satisfied 

from the bandlimited property of α and βn, i.e. supp α̂ and supp β̂n are finite, since the summation in (2.4)
is taken over finite terms. On the other hand, when α, βn are not bandlimited, a very mild condition on the 
decay of α̂ guarantees that ϕj,y and ψn

j,y in (2.4) are functions in L2(M), which is a consequence of Weyl’s 
asymptotic formula [12,70] and Grieser’s uniform bound of eigenfunctions [31] as stated in the following 
lemma.

For two real sequences {A�}∞�=0 and {B�}∞�=0, the symbol A� � B� means that there exist positive 
constants c, c′ independent of � such that c′B� ≤ A� ≤ cB� for all � ≥ 0.

Lemma 2.2. Let d ≥ 2 and M be a d-dimensional smooth and compact Riemannian manifold with smooth 
boundary. Let {(u�, λ�)}∞�=0 be the orthonormal eigen-pairs of the Laplace–Beltrami operator Δ on M, i.e. 
Δu� = −λ2

� u�, � ≥ 0, with u0 ≡ 1. Then,

λ� � �
1
d , ‖u�‖L∞(M) ≤ c1 |λ�|

d−1
2 , � ≥ 0,

where the constant c1 depends only on the dimension d.

Lemma 2.2 implies the following result (cf. [25]) which shows that for any y ∈ M, the continuous 
framelets ϕj,y and ψn

j,y, n = 1, . . . , r, are in L2(M) under a mild decay assumption on α̂.

Proposition 2.3. Let the conditions of Lemma 2.2 be satisfied. Let Ψ := {α; β1, . . . , βr} ⊂ L1(R) with r ≥ 1
be a set of framelet generators associated with a filter bank η := {a; b1, . . . , br} ⊂ l1(Z) satisfying (2.1). Let 
ϕj,y and ψn

j,y be the continuous framelets given in (2.4). Suppose s > d − 1/2 and
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|α̂(ξ)| ≤ c0 (1 + |ξ|)−s ∀ξ ∈ R. (2.20)

Then, for any j ∈ Z,

sup
y∈M

‖ϕj,y‖L2(M) < ∞ and sup
y∈M

‖ψn
j,y‖L2(M) < ∞, n = 1, . . . , r.

Proof. Fix j ∈ Z. By Parseval’s identity and the estimates in Lemma 2.2, the squared L2-norm of ϕj,y is

∥∥ϕj,y

∥∥2
L2(M) =

∞∑
�=0

∣∣∣∣α̂(
λ�

2j

)∣∣∣∣2 ∣∣∣u�(y)
∣∣∣2 ≤ (c1c0)2

∞∑
�=0

(
1 +

∣∣∣λ�

2j
∣∣∣)−2s

× λd−1
�

≤ c̃

∞∑
�=0,λ� �=0

λ
−(2s−(d−1))
� ≤ c̃

∞∑
�=1

�−
2s−(d−1)

d < ∞,

where the last inequality follows from the assumption s > d − 1/2. Since {a; b1, . . . , br} ⊂ l1(Z), the Fourier 
series â, b̂1, . . ., b̂r are all bounded Fourier series. By the relations in (2.1), all β̂n have the same decay 
property as α̂ in (2.20). The finiteness for the L2-norm of ψn

j,y then follows from the same argument for 
ϕj,y as above. �
2.2. Semi-discrete framelets

In order to efficiently process a data set on a manifold, one needs the discrete version of the continuous 
framelets in (2.4). A natural way to discretize the continuous framelets on M is to use quadrature rules (for 
numerical integration). In this subsection, we show how to use quadrature rules to discretize the continuous
framelets in (2.4).

Let

QNj
:= Q

(j)
Nj

:= {(ωj,k,xj,k) ∈ R×M : k = 0, . . . , Nj}

be a set of pairs at scale j with Nj +1 weights ωj,k ∈ R and Nj +1 points xj,k ∈ M. When QNj
is used for 

numerical integration on M, we say QNj
a quadrature rule on M. We use the quadrature rules QNj

and 
QNj+1 to discretize the integrals for the continuous framelets ϕj,y and ψn

j,y as functions of y on M in (2.6). 
The (semi-discrete) framelets ϕj,k(x) and ψn

j,k(x) (with abuse of notation) at scale j are then defined as

ϕj,k(x) := √
ωj,k ϕj,xj,k

(x) = √
ωj,k

∞∑
�=0

α̂

(
λ�

2j

)
u�(xj,k)u�(x),

ψn
j,k(x) := √

ωj+1,k ψn
j,xj+1,k

(x) = √
ωj+1,k

∞∑
�=0

β̂n

(
λ�

2j

)
u�(xj+1,k)u�(x), n = 1, . . . , r.

(2.21)

Here, the weights ωj,k in (2.21) need not be non-negative. The square roots of weights are purely needed to 
satisfy the tightness of the framelets. The discretization of the integral for ψn

j,y uses the nodes from QNj+1

as ψn
j,y is in the scale j + 1, which can be understood from the point of view of multiresolution analysis. 

This will be clear later when we discuss the bandlimited property of βn.
Let Q := {QNj

}j≥J . The (semi-discrete) framelet system FSJ(Ψ, Q) := FSJ(Ψ, Q; M) on M (starting at 
a scale J ∈ Z) is a (nonhomogeneous) affine system defined to be

FSJ(Ψ,Q) := FSJ(Ψ,Q;M) := {ϕJ,k : k = 0, . . . , NJ} ∪ {ψj,k : k = 0, . . . , Nj+1, j ≥ J}. (2.22)
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The framelet system FSJ(Ψ, Q) is said to be a (semi-discrete) tight frame for L2(M) if FSJ(Ψ, Q) ⊂ L2(M)
and if, in L2 sense,

f =
NJ∑
k=0

〈
f,ϕJ,k

〉
ϕJ,k +

∞∑
j=J

Nj+1∑
k=0

r∑
n=1

〈
f,ψn

j,k

〉
ψn

j,k ∀f ∈ L2(M), (2.23)

or equivalently,

‖f‖2
L2(M) =

NJ∑
k=0

∣∣〈f,ϕJ,k

〉∣∣2 +
∞∑
j=J

Nj+1∑
k=0

r∑
n=1

∣∣〈f,ψn
j,k

〉∣∣2 ∀f ∈ L2(M).

The elements in FSJ(Ψ, Q) are then said to be (semi-discrete) tight framelets for L2(M). We also say 
FSJ(Ψ, Q) (semi-discrete) tight framelets.

The following theorem gives equivalence conditions of a sequence {FSJ(Ψ, Q)}∞J=J0
of (semi-discrete) 

framelet systems in (2.23) to be a sequence of tight frames for L2(M). The equivalence relations lead to 
framelet transforms on a manifold and a way to constructing filter banks for a tight framelet system.

Theorem 2.4. Let J0 ∈ Z be an integer and Ψ := {α; β1, . . . , βr} ⊂ L1(R) with r ≥ 1 be a set of framelet 
generators associated with a filter bank η := {a; b1, . . . , br} ⊂ l1(Z) satisfying (2.1). Let Q = {QNj

}j≥J0 be a 

sequence of quadrature rules QNj
:= Q

(j)
Nj

:= {(ωj,k, xj,k) ∈ R ×M : k = 0, . . . , Nj}. Define (semi-discrete) 
framelet system FSJ(Ψ, Q) = FSJ(Ψ, Q; M), J ≥ J0 as in (2.22) with framelets ϕj,k and ψn

j,k given by 
(2.21). Suppose elements in FSJ(Ψ, Q) are all functions in L2(M). Then, the following statements are 
equivalent.

(i) The framelet system FSJ(Ψ, Q) is a tight frame for L2(M) for any J ≥ J0, i.e. (2.23) holds for all 
J ≥ J0.

(ii) For all f ∈ L2(M), the following identities hold:

lim
j→∞

∥∥∥ Nj∑
k=0

〈
f,ϕj,k

〉
ϕj,k − f

∥∥∥
L2(M)

= 0, (2.24)

Nj+1∑
k=0

〈
f,ϕj+1,k

〉
ϕj+1,k =

Nj∑
k=0

〈
f,ϕj,k

〉
ϕj,k +

Nj+1∑
k=0

r∑
n=1

〈
f,ψn

j,k

〉
ψn

j,k, j ≥ J0. (2.25)

(iii) For all f ∈ L2(M), the following identities hold:

lim
j→∞

Nj∑
k=0

∣∣〈f,ϕj,k

〉∣∣2 = ‖f‖2
L2(M), (2.26)

Nj+1∑
k=0

∣∣〈f,ϕj+1,k
〉∣∣2 =

Nj∑
k=0

∣∣〈f,ϕj,k

〉∣∣2 +
Nj+1∑
k=0

r∑
n=1

∣∣〈f,ψn
j,k

〉∣∣2, j ≥ J0. (2.27)

(iv) The generators in Ψ and the sequence of sets QNj
satisfy

lim α̂

(
λ�

j

)
α̂

(
λ�′

j

)
U�,�′(QNj

) = δ�,�′ , (2.28)

j→∞ 2 2
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α̂

(
λ�

2j

)
α̂

(
λ�′

2j

)
U�,�′(QNj

) =
[
α̂

(
λ�

2j+1

)
α̂

(
λ�′

2j+1

)
−

r∑
n=1

β̂n

(
λ�

2j

)
β̂n

(
λ�′

2j

)]
U�,�′(QNj+1)

(2.29)

for all �, �′ ≥ 0 and j ≥ J0, where

U�,�′(QNj
) :=

Nj∑
k=0

ωj,ku�(xj,k)u�′(xj,k). (2.30)

(v) The refinable function α, the filters in the filter bank η, and the sequence of quadrature rules QNj

satisfy (2.28) and[
â

(
λ�

2j

)
â

(
λ�′

2j

)
U�,�′(QNj−1) +

r∑
n=1

b̂n
(
λ�

2j

)
b̂n

(
λ�′

2j

)
U�,�′(QNj

)
]

= U�,�′(QNj
), ∀(�, �′) ∈ σj

α,α,

(2.31)

for all j ≥ J0 + 1, where

σj
α,α :=

{
(�, �′) ∈ N0 × N0 : α̂

(
λ�

2j

)
α̂

(
λ�′

2j

)
�= 0

}
. (2.32)

In particular, if for all j ≥ J0, the sum U�,�′(QNj
) satisfies

U�,�′(QNj
) = δ�,�′ ∀(�, �′) ∈ σj

α,α, (2.33)

then the above items (iv) and (v) reduce to the items (iv) and (v) in Theorem 2.1 respectively.

Proof. We skip the proofs of equivalence among the statements (i)–(iii), which are similar to those of 
Theorem 2.1, and only show the equivalence among the statements (iii)–(v) as follows.

(iii) ⇐⇒ (iv). For f ∈ L2(M), by the formulas in (2.21) and the orthonormality of u�, we obtain

〈
f,ϕj,k

〉
= √

ωj,k

∞∑
�=0

α̂

(
λ�

2j

)
f̂� u�(xj,k),

〈
f,ψn

j,k

〉
= √

ωj+1,k

∞∑
�=0

β̂n

(
λ�

2j

)
f̂� u�(xj+1,k). (2.34)

It then follows

Nj∑
k=0

∣∣〈f,ϕj,k

〉∣∣2 =
Nj∑
k=0

ωj,k

∣∣∣∣∣
∞∑
�=0

α̂

(
λ�

2j

)
f̂� u�(xj,k)

∣∣∣∣∣
2

=
∞∑
�=0

∞∑
�′=0

f̂�f̂�′ α̂

(
λ�

2j

)
α̂

(
λ�′

2j

) Nj∑
k=0

ωj,ku�(xj,k)u�′(xj,k)

=
∞∑
�=0

∞∑
�′=0

f̂�f̂�′ α̂

(
λ�

2j

)
α̂

(
λ�′

2j

)
U�,�′(QNj

)

=
∞∑
�=0

|f̂�|2
∣∣∣∣α̂(

λ�

2j

)∣∣∣∣2 U�,�(QNj
) +

∞∑
�=0

∞∑
�′=0,�′ �=�

f̂�f̂�′ α̂

(
λ�

2j

)
α̂

(
λ�′

2j

)
U�,�′(QNj

).

This is true for all f ∈ L2(M), which gives the equivalence between (2.26) and (2.28). On the other hand, 
from (2.34), we observe that the formula (2.27) can be rewritten as
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∞∑
�=0

∞∑
�′=0

f̂�f̂�′ α̂

(
λ�

2j+1

)
α̂

(
λ�′

2j+1

)
U�,�′(QNj+1)

=
∞∑
�=0

∞∑
�′=0

f̂�f̂�′

[
α̂

(
λ�

2j

)
α̂

(
λ�′

2j

)
U�,�′(QNj

) +
r∑

n=1
β̂n

(
λ�

2j

)
β̂n

(
λ�′

2j

)
U�,�′(QNj+1)

]
∀f ∈ L2(M),

which is equivalent to (2.29).
(iv) ⇐⇒ (v). By (2.1), we have

α̂

(
λ�

2j−1

)
α̂

(
λ�′

2j−1

)
U�,�′(QNj−1) +

r∑
n=1

β̂n

(
λ�

2j−1

)
β̂n

(
λ�′

2j−1

)
U�,�′(QNj

)

=
[
â

(
λ�

2j

)
â

(
λ�′

2j

)
U�,�′(QNj−1) +

r∑
n=1

b̂n
(
λ�

2j

)
b̂n

(
λ�′

2j

)
U�,�′(QNj

)
]
α̂

(
λ�

2j

)
α̂

(
λ�′

2j

)
,

which implies (2.29)⇐⇒(2.31) and thus proves the equivalence between (iv) and (v).
In particular, if (2.33) is satisfied, then in view of σj

α,α ⊂ σj+1
α,α , we see that (2.28), (2.29) and (2.31)

reduce to (2.12), (2.13) and (2.14) in Theorem 2.1 respectively. We are done. �
Remark (Unitary extension principle). The items (iv) and (v) in Theorem 2.4 can be regarded as the 
unitary extension principle (UEP) for L2(M). In L2(R), the filter bank η = {a; b1, . . . , br} associated with 
Ψ = {α; β1, . . . , βr} ⊂ L2(R) by (2.1) is said to satisfy the UEP (see [22,59]) for L2(R) if for a.e. ξ ∈ R,

|â(ξ)|2 +
r∑

n=1
|b̂n(ξ)|2 = 1, (2.35a)

â(ξ)â
(
ξ + 1

2

)
+

r∑
n=1

b̂n(ξ)b̂n
(
ξ + 1

2

)
= 0. (2.35b)

The UEP conditions in (2.35) together with a decay condition on α̂ imply the tightness of a framelet system 
generated from Ψ through dilation and translation in L2(R), see e.g. [21]. By Theorem 2.1, only the condition 
(2.35a) is needed to construct continuous tight frame CFSJ(Ψ; M) for L2(M). To ensure the tightness of 
the semi-discrete tight framelet system FSJ(Ψ, Q) in L2(M), the condition (2.31) is needed. This can be 
viewed as a generalization of UEP on the manifold M. The condition (2.31) seems more complicated than 
those in (2.35). However, (2.31) brings more flexibility in practice for the construction of semi-discrete tight 
frames for L2(M) as will be discussed below.

Remark (Quadrature rules). Theorem 2.4 provides a natural connection to the design of polynomial-exact 
quadrature rules on M. It shows that using suitable quadrature rules on M is critical to the tightness and 
the multiresolution structure for framelets FSJ(Ψ, Q). The sum U�,�′(QNj

) in (2.30) is a discrete version 
of the integral of the product of u� and u�′ by the quadrature rule QNj

. Suppose the refinable function 
is normalized so that α̂(0) = 1. Then, by the orthonormality of the eigenfunctions u�, the formula (2.28)
is saying that the error of the numerical integration approximated by the framelet quadrature rule QNj

converges to zero as j → ∞, that is,

lim
j→∞

U�,�′(QNj
) = lim

j→∞

Nj∑
k=0

u�(xj,k)u�′(xj,k) =
∫
M

u�(x)u�′(x)dμ(x) = 〈u�, u�′〉 = δ�,�′ .

This is satisfied by most of the quadrature rules, for example, QMC designs on the sphere [9], lattice rules 
and low-discrepancy points on the unit cube [23].
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Remark. For simplicity, one may consider using the same quadrature rule for all scales in practice [25], i.e. 
QNj

≡ QN for all j, the equations (2.29) and (2.31) are simplified without the term U�,�′ . This, however, leads 
to that the data complexity (or the redundancy rate) increases exponentially in the level of decomposition 
and is thus not desirable.

We next discuss how to achieve condition in (2.33). For n ∈ N0, the space Πn := span{u�, u� : λ� ≤ n}
is said to be the (orthogonal diffusion) polynomial space of degree n on M and an element of Πn is said 
to be a polynomial of degree n. In Lemma 2.2, Corollary 2.6, and Theorem 3.1 below, we assume that the 
product of two polynomials is still a polynomial, that is, there exists a (minimal) integer c ≥ 2 such that

q1q2 ∈ Πc·n ∀q1, q2 ∈ Πn. (2.36)

This assumption holds true for a general compact Riemannian manifold when the orthonormal eigen-pair 
{(u�, λ�)}∞�=0 is of a certain operator, such as the Laplace–Beltrami operator, see e.g. [27, Theorem A.1]. 
When M is the unit sphere Sd or the torus Td for d ≥ 1, the assumption of (2.36) holds with c = 2 for the 
orthonormal eigen-pair of the Laplace–Beltrami operator.

For n ≥ 0, a quadrature rule QN,n := QN := {(ωk, yk)}Nk=0 on M is said to be a polynomial-exact 
quadrature rule of degree n if

∫
M

q(x)dμ(x) =
N∑

k=0

ωk q(yk) ∀q ∈ Πn. (2.37)

Here, we use QN,n to emphasize the degree n of the exactness of QN . Since Πn has the finite dimension, 
the quadrature rules QN,n can be pre-designed. For example, [53,64] give the polynomial-exact quadrature 
rules on the two-dimensional sphere S2. For polynomial-exact quadrature rules on other manifolds, refer to 
e.g. [8,38,43].

The following lemma shows that if the generators of Ψ are bandlimited functions, the condition (2.33)
can be easily satisfied.

Lemma 2.5. Suppose (2.36) holds. Let α ∈ L1(R) be a bandlimited function such that supp α̂ ⊆ [0, 1/c]
with c ≥ 2 the integer in (2.36). Let j ∈ Z and QNj

= {(ωj,k, xj,k) ∈ R × M : k = 0, . . . , Nj} be a 
polynomial-exact quadrature rule of degree 2j. Then QNj

satisfies (2.33).

Proof. Since supp α̂ ⊆ [0, 1/c], we obtain by (2.32)

σj
α,α ⊆ {(�, �′) : (λ�, λ�′) ∈ [0, 2j/c) × [0, 2j/c)}.

This together with the assumption in (2.36) gives u�u�′ ∈ Π2j for (�, �′) ∈ σj
α,α. Consequently, by the 

orthonormality of {u�}∞�=0 and that QNj
is a quadrature rule of degree 2j, for all (�, �′) ∈ σj

α,α, we obtain

U�,�′(QNj
) =

Nj∑
k=0

ωj,k u�(xj,k)u�′(xj,k) =
∫
M

u�(x)u�′(x)dμ(x) = δ�,�′ ,

which is (2.33). �
The following corollary, which is an immediate consequence of Theorem 2.4 and Lemma 2.5, shows that 

the tightness of a sequence of semi-discrete framelet systems FSJ(Ψ, Q), J ≥ J0 is equivalent to that of the 
corresponding sequence of continuous framelet systems CFSJ(Ψ), J ≥ J0 if the quadrature rule QNj

, j ≥ J0
for FSJ(Ψ, Q) is exact for polynomials of degree 2j .



78 Y.G. Wang, X. Zhuang / Appl. Comput. Harmon. Anal. 48 (2020) 64–95
Corollary 2.6. Let J0 ∈ Z be an integer and Ψ := {α; β1, . . . , βr} ⊂ L1(R) with r ≥ 1 a set of bandlimited 
functions associated with a filter bank η := {a; b1, . . . , br} ⊂ l1(Z) satisfying (2.1). Suppose that (2.36)
holds, supp α̂ ⊆ [0, 1/c] with c ≥ 2 the integer in (2.36), and QNj

is a (polynomial-exact) quadrature rule 
of degree 2j. Let Q := {QNj

}j≥J0 and define continuous framelet systems CFSJ(Ψ), J ≥ J0 as in (2.5) and 
semi-discrete framelet systems FSJ(Ψ, Q), J ≥ J0 as in (2.22). Then, the framelet system FSJ(Ψ, Q) is a 
tight frame for L2(M) for all J ≥ J0 if and only if the framelet system CFSJ(Ψ) is a tight frame for L2(M)
for all J ≥ J0.

3. Fast framelet filter bank transforms on M

By (2.21) and (2.4), the framelet ϕj,k in a framelet system FSJ(Ψ; Q) can be written as a constant 
multiple of the kernel in (2.3): ϕj,k = √

ωj,kKα̂,2j (·, xj,k). The ϕj,k is thus well-localized, concentrated at 
xj,k when j is sufficiently large (see Fig. 4). As the convolution of a function γ in L1(R) with the delta 
function δ which recovers γ, the inner product 

〈
f,ϕJ,k

〉
of the framelet coefficient approximates the function 

value f(xJ,k) as level J is sufficiently high. In practice, we can thus regard the function values f(xJ,k), 
k = 0, . . . , NJ on the manifold as the values of the framelet coefficients 

〈
f,ϕJ,k

〉
, k = 0, . . . , NJ at scale J.

In this section, we discuss the multi-level framelet filter bank transforms associated with a sequence of 
tight frames FSJ(Ψ, Q) for L2(M). The transforms include the decomposition and the reconstruction: the 
decomposition of vj = (vj,k)

Nj

k=0 = (
〈
f,ϕj,k

〉
)Nj

k=0 into a coarse scale approximation coefficient sequence
vj−1 = (

〈
f,ϕj−1,k

〉
)Nj−1
k=0 and into the coarse scale detail coefficient sequences wn

j−1 = (wn
j−1,k)

Nj

k=0 =
(
〈
f,ψn

j−1,k
〉
)Nj

k=0, n = 1, . . . , r, and the reconstruction of vj , an inverse process, from the coarse scale 
approximations and details to fine scales. We show that the decomposition and reconstruction algorithms 
for the framelet filter bank transforms can be implemented based on discrete Fourier transforms on M. 
Using fast discrete Fourier transforms (FFTs) on M, we are able to develop fast algorithmic realizations 
for the multi-level framelet filter bank transforms (FMT algorithms).

3.1. Multi-level framelet filter bank transforms

The FMT algorithms use convolution, downsampling and upsampling for data sequences on M, as we 
introduce now.

Let {QNj
}∞j=J0

be a sequence of quadrature rules on M with QNj
= {(ωj,k, xj,k) ∈ R ×M : k = 0, . . . , Nj}

a polynomial-exact quadrature rule of degree 2j, i.e. (2.37) holds with QN replaced by QNj
. For an integer 

N ∈ N0, we denote by l(N) the set of sequences supported on [0, N ]. Let Λj := dim Π2j/c = #{� ∈ N0 :
λ� ≤ 2j/c} with c ≥ 2 the minimal integer in (2.36). The following transforms (operators or operations) 
between sequences in l(Λj) and sequences in l(Nj) play an important role in describing and implementing 
the FMT algorithms.

For j ∈ N0, the discrete Fourier transform Fj : l(Λj) → l(Nj) for a sequence c̃ = (c̃�)Λj

�=0 ∈ l(Λj) is 
defined as

(Fj c̃)k :=
Λj∑
�=0

c̃�
√
ωj,k u�(xj,k), k = 0, . . . , Nj (3.1)

The sequence Fj c̃ is said to be a (Λj , Nj)-sequence and c̃ is said to be the discrete Fourier coefficient 
sequence of Fj c̃. Let l(Λj , Nj) the set of all (Λj , Nj)-sequences. The adjoint discrete Fourier transform
F∗

j : l(Nj) → l(Λj) for a sequence v = (vk)
Nj

k=0 ∈ l(Nj) is defined to be

(F∗
jv)� :=

Nj∑
vk

√
ωj,k u�(xj,k), � = 0, . . . ,Λj . (3.2)
k=0
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Since QNj
is a polynomial-exact quadrature rule of degree 2j , for every (Λj , Nj)-sequence v, there is a 

unique sequence c̃ ∈ l(Λj) such that Fj c̃ = v. Hence, the notation v̂ := c̃ = F∗
jv for the discrete Fourier 

coefficient sequence of a (Λj , Nj)-sequence v is well-defined.
Let h ∈ l1(Z) be a mask (filter). The discrete convolution v ∗j h of a sequence v ∈ l(Λj , Nj) with a mask 

h is a sequence in l(Λj , Nj) defined as

(v ∗j h)k :=
Λj∑
�=0

v̂� ĥ

(
λ�

2j

)
√
ωj,k u�(xj,k), k = 0, . . . , Nj . (3.3)

As (v̂ ∗j h)� = v̂� ĥ
(
λ�

2j

)
for � ∈ Λj , we have v̂ ∗j h ∈ l(Λj) and the definition (3.3) is equivalent to 

v ∗j h = Fj(v̂ ∗j h).
The downsampling operator ↓j : l(Λj , Nj) → l(Nj−1) for a (Λj , Nj)-sequence v is

(v↓j)k :=
Λj∑
�=0

v̂�
√
ωj−1,k u�(xj−1,k), k = 0, . . . , Nj−1. (3.4)

The upsampling operator ↑j : l(Λj−1, Nj−1) → l(Λj , Nj) for a (Λj−1, Nj−1)-sequence v is

(v↑j)k :=
Λj−1∑
�=0

v̂�
√
ωj,k u�(xj,k), k = 0, . . . , Nj . (3.5)

For a mask h, let h	 be the mask satisfying ĥ	(ξ) = ĥ(ξ), ξ ∈ R. The following theorem shows the framelet 
decomposition and reconstruction using the above convolution, downsampling and upsampling, under the 
condition that QNj

is a polynomial-exact quadrature rule of degree 2j .

Theorem 3.1. Let J0 ∈ Z be an integer and Ψ := {α; β1, . . . , βr} ⊂ L1(R) with r ≥ 1 a set of framelet 
generators associated with a filter bank η := {a; b1, . . . , br} ⊂ l1(Z) satisfying (2.1). Let Q = {QNj

}j≥J0 be 

a sequence of quadrature rules on M with QNj
:= Q

(j)
Nj

:= {(ωj,k, xj,k) ∈ R ×M : k = 0, . . . , Nj}. Define 
(semi-discrete) framelet systems FSJ(Ψ, Q) = FSJ(Ψ, Q; M), J ≥ J0 as in (2.22). Suppose that (2.36) and 
(2.14) hold, supp α̂ ⊆ [0, 1/c] with c ≥ 2 the minimal integer in (2.36), and QNj

is exact for polynomials of 
degree 2j for j ≥ J0. Let vj = (vj,k)

Nj

k=0 and wn
j = (wn

j,k)
Nj+1
k=0 , n = 1, . . . , r be the approximation coefficient 

sequence and detail coefficient sequences of f ∈ L2(M) at scale j given by

vj,k :=
〈
f,ϕj,k

〉
, k = 0, . . . , Nj , and wn

j,k :=
〈
f,ψn

j,k

〉
, k = 0, . . . , Nj+1, n = 1, . . . , r, (3.6)

respectively. Then,

(i) the coefficient sequence vj is a (Λj , Nj)-sequence and wn
j , n = 1, . . . , r, are (Λj+1, Nj+1)-sequences for 

all j ≥ J0;
(ii) for any j ≥ J0 + 1, the following decomposition relations hold:

vj−1 = (vj ∗j a	)↓j , wn
j−1 = vj ∗j (bn)	, n = 1, . . . , r; (3.7)

(iii) for any j ≥ J0 + 1, the following reconstruction relation holds:

vj = (vj−1↑j) ∗j a +
r∑

n=1
wn

j−1 ∗j bn. (3.8)
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Proof. For vj and wn
j−1 in (3.6), by (2.34), (2.1) and supp α̂ ⊆ [0, 1/c], we obtain supp β̂n ⊆ [0, 2/c] and

vj,k =
Λj∑
�=0

f̂� α̂

(
λ�

2j

)
√
ωj,k u�(xj,k), wn

j−1,k =
Λj∑
�=0

f̂� β̂n

(
λ�

2j−1

)
√
ωj,k u�(xj,k).

Hence, vj and wn
j−1, n = 1, . . . , r are all (Λj , Nj)-sequences with the discrete Fourier coefficients v̂j :=

(v̂j,�)
Λj

�=0 and ŵn
j−1 := (ŵn

j−1,�)
Λj

�=0 given by

v̂j,� = f̂� α̂

(
λ�

2j

)
, ŵn

j−1,� = f̂� β̂n

(
λ�

2j

)
, � = 0, . . . ,Λj .

Thus, item (i) holds.
We observe that vj−1 is a (Λj−1, Nj−1)-sequence. Using (2.1) gives, for k = 0, . . . , Nj−1,

vj−1,k =
Λj−1∑
�=0

f̂� α̂

(
λ�

2j−1

)
√
ωj−1,k u�(xj−1,k)

=
Λj−1∑
�=0

f̂� α̂

(
λ�

2j

)
â

(
λ�

2j

)
√
ωj−1,k u�(xj−1,k)

=
Λj∑
�=0

v̂j,� â

(
λ�

2j

)
√
ωj−1,k u�(xj−1,k)

= [(vj ∗j a	)↓j ](k).

Similarly, for k = 0, . . . , Nj−1 and n = 1, . . . , r,

wn
j−1,k =

Λj∑
�=0

f̂� β̂n

(
λ�

2j−1

)
√
ωj,k u�(xj,k) = (vj ∗j (bn)	)k.

This proves (3.7), thus, item (ii) holds.
Using vj−1 = (vj ∗j a	) ↓j and wn

j−1 = vj ∗j (bn)	, we obtain

ṽ := (vj−1↑j) ∗j a +
r∑

n=1
wn

j−1 ∗j bn = (((vj ∗j a	)↓j)↑j) ∗j a +
r∑

n=1
(vj ∗j (bn)	) ∗j bn.

This with (3.3), (3.4), (3.5) and (2.14) gives

ṽk =
Λj∑
�=0

v̂j,�

(∣∣∣∣â(λ�

2j

)∣∣∣∣2 +
r∑

n=1

∣∣∣∣b̂n (
λ�

2j

)∣∣∣∣2
)
√
ωj,k u�(xj,k)

=
Λj∑
�=0

v̂j,�
√
ωj,k u�(xj,k)

= vj,k,

thus proving (3.8), which completes the proof. �
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Fig. 2. Two-level framelet filter bank decomposition and reconstruction based on the filter bank {a; b1, . . . , br}.

Theorem 3.1 gives the one-level framelet decomposition and reconstruction on M, as illustrated by Fig. 1. 
Given a sequence vJ ∈ l(ΛJ , NJ) with J ≥ J0 ∈ Z, the multi-level framelet filter bank decomposition from 
level J to J0 is given by

vj−1 = (vj ∗j a	)↓j , wn
j−1 = vj ∗j (bn)	, n = 1, . . . , r, j = J, . . . , J0 + 1.

The corresponding multi-level framelet analysis operator

W : l(ΛJ , QNJ
) → l(NJ )1×r × l(NJ−1)1×r × · · · × l(NJ1)1×r × l(NJ0)

is defined as

WvJ = (w1
J−1, . . . ,wr

J−1, . . . ,w1
J0
, . . . ,wr

J0
, vJ0), vJ ∈ l(ΛJ , NJ). (3.9)

For a sequence (w1
J−1, . . . , wr

J−1, . . . , w1
J0
, . . . , wr

J0
, vJ0) of framelet coefficient sequences obtained from a 

multi-level decomposition, the multi-level framelet filter bank reconstruction is given by

vj = (vj−1↑j) ∗j a +
r∑

n=1
wn

j−1 ∗j bn, j = J0 + 1, . . . , J.

The corresponding multi-level framelet synthesis operator

V : l(NJ)1×r × l(NJ−1)1×r × · · · × l(NJ1)1×r × l(NJ0) → l(ΛJ , NJ)

is defined as

V(w1
J−1, . . . ,wr

J−1, . . . ,w1
J0
, . . . ,wr

J0
, vJ0) = vJ .

When the condition of Theorem 3.1 is satisfied, the analysis and synthesis operators are invertible on 
l(Λj , Nj) for any j ≥ J0, i.e. VW = I|l(Λj ,Nj), where I is the identity operator. The two-level decomposition 
and reconstruction framelet filter bank transforms are the processes using the one-level twice, as depicted 
by the diagram in Fig. 2. Similarly, the multi-level framelet filter bank transforms are recursive use of 
the one-level. The detailed algorithmic steps of the decomposition and reconstruction are described in 
Algorithms 1 and 2 in Section 3.2.

3.2. Fast framelet filter bank transforms

The decomposition in (3.7) and the reconstruction in (3.8) can be rewritten in terms of discrete Fourier 
transforms (DFTs) and adjoint DFTs on M as

vj−1 = Fj−1( ̂vj ∗j a	), wn
j−1 = Fj( ̂vj ∗j (bn)	), n = 1, . . . , r
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and

v̂j,� =
(
F∗

j (vj−1)
)
�
â(λ�/2j) +

r∑
n=1

(
F∗

j (wn
j−1)

)
�
b̂n(λ�/2j), � = 0, . . . ,Λj .

The decomposition and reconstruction are thus combinations of discrete Fourier transforms (or the adjoint 
DFTs) with discrete convolutions. As vj ∗j h is simply point-wise multiplication in the frequency domain, 
the computational complexity of the algorithms is determined by the computational complexity of DFTs 
and adjoint DFTs. Assuming fast discrete Fourier transforms on M, the multi-level framelet filter bank 
transforms can be efficiently implemented in the sense that the computational steps are in proportion to 
the size of the input data. We say these algorithms fast framelet filter bank transforms on M, or FMTs.

Let (ωk, xk)Nk=0 a quadrature rule on M, v = (vk)Nk=0 a data sequence with respect to (ωk, xk)Nk=0 in the 
time domain, and v̂ = (v̂�)M�=0 the sequence of discrete Fourier coefficients of v in the frequency domain. 
The discrete Fourier transform for the sequence of Fourier coefficients v̂ on M is given by

(Fv̂)k :=
M∑
�=0

v̂�
√
ωku�(xk), k = 0, . . . , N, (3.10)

and the adjoint discrete Fourier transform for the sequence v on M is given by

(F∗v)� :=
N∑

k=0

vk
√
ωk u�(xk), � = 0, . . . ,M, (3.11)

see (3.1) and (3.2). Without loss of generality, we assume M ≤ N .
By “fast” we mean that the computation of (Fv̂)Nk=0 given (v̂�)M�=0 in (3.10) (or the computation of 

(F∗v)M�=0 in (3.11)) can be realized in order O (N) flops up to a log factor similar to the standard FFT 
algorithms on R (u� = exp(−2πi�·) in R). The inverse discrete Fourier transform F−1 can be implemented 
in the same order O (N) by solving the normal equation F∗Fv̂ = F∗v using conjugate gradient methods 
(CG).

Fast algorithms for DFTs and adjoint DFTs exist in typical manifolds, for example, the fast spherical 
harmonic transforms on the sphere, the fast discrete Fourier transforms on the torus and the fast Legendre 
transforms on the hypercube, see e.g. [26,32,39,42,58].

Algorithms 1 and 2 below show the detailed algorithmic steps for the multi-level FMTs for the decom-
position and reconstruction of the framelet coefficient sequences on a manifold assuming the condition of 
Theorem 3.1.

We give a brief analysis of the computational complexity analysis of the FMT algorithms (assuming 
J ≥ J0 = 0), as follows.

In Algorithm 1, the line 1 is of order O (NJ); the lines 2–8 together are of order O (r(NJ−1 + · · · + N0)); 
the line 9 is of order O (N0); the total complexity is O (NJ + r(NJ−1 + · · · + N0) + N0).

In Algorithm 2, the line 1 is of order O (N0); the lines 2–7 together are of order O (r(N0 + · · · + NJ−1)); 
the line 8 is of order O (NJ ); the total complexity is O (N0 + r(N0 + · · · + NJ−1) + NJ ).

If the numbers of the nodes of the quadrature rules QNj
and Qj−1 in consecutive levels satisfy Nj

Nj−1
� c0

for all j ≥ 1 with c0 > 1, the computational complexities of both the FMT decomposition and reconstruction 
are of order O ((r + 1)NJ ) for the sequence vJ of the framelet coefficients of size NJ . Note that O ((r + 1)NJ)
is also the order of the redundancy rate of the FMT algorithms. For example, on the unit sphere S2, using 
symmetric spherical designs (see [72]), the number of the quadrature nodes Nj ∼ 22j+1, then Nj

Nj−1
� 4, and 

the FFT on S2 has the complexity O
(
N
√

logN
)

with N the size of the input data, see e.g. [42], thus, the 
FMT on S2 has the computational complexity O

(
N
√

logN
)
.
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Algorithm 1: Multi-level FMT: decomposition.

Input : vJ – a (ΛJ , NJ )-sequence
Output:

(
{wn

J−1, wn
J−2, . . . , wn

J0
}rn=1, vJ0

)
as in (3.9)

1 vJ −→ v̂J // adjoint FFT
2 for j ← J to J0 + 1 do
3 v̂j−1 ←− v̂j,· â (2−jλ·) // downsampling & convolution

4 for n ← 1 to r do
5 ŵn

j−1 ←− v̂j,· b̂n (2−jλ·) // convolution

6 wn
j−1 ←− ŵn

j−1 // FFT
7 end
8 end
9 vJ0 ←− v̂J0 // FFT

Algorithm 2: Multi-level FMT: reconstruction.

Input :
(
{wn

J−1, wn
J−2, . . . , wn

J0
}rn=1, vJ0

)
as in (3.9)

Output: vJ – a (ΛJ , NJ )-sequence
1 v̂J0 ←− vJ0 // adjoint FFT
2 for j ← J0 + 1 to J do
3 for n ← 1 to r do
4 ŵn

j−1 ←− wn
j−1 // adjoint FFT

5 end
6 v̂j ←− (v̂j−1,·) ̂a

(
2−jλ·

)
+
∑r

n=1 ŵn
j,· b̂

n
(
2−jλ·

)
// upsampling & convolution

7 end
8 vJ ←− v̂J // FFT

4. Multiscale data analysis on the sphere

In this section, we construct tight framelets on the sphere S2 and present several examples to demonstrate 
data analysis on S2 using tight framelets.

4.1. Framelets on the sphere

In this subsection, we give an explicit construction of framelets on S2 to illustrate the results in Section 2. 
For simplicity, we consider the filter bank η = {a; b1, b2} with two high-pass filters. We remark that η can 
be extended to a filter bank with arbitrary number of high-pass filters in a similar manner.

Define the filter bank η := {a; b1, b2} by their Fourier series as follows.

â(ξ) :=

⎧⎪⎨⎪⎩
1, |ξ| < 1

8 ,

cos
(
π
2 ν(8|ξ| − 1)

)
, 1

8 ≤ |ξ| ≤ 1
4 ,

0, 1
4 < |ξ| ≤ 1

2 ,

(4.1a)

b̂1(ξ) :=

⎧⎪⎨⎪⎩
0, |ξ| < 1

8 ,

sin
(
π
2 ν(8|ξ| − 1)

)
, 1

8 ≤ |ξ| ≤ 1
4 ,

cos
(
π ν(4|ξ| − 1)

)
, 1 < |ξ| ≤ 1 .

(4.1b)
2 4 2



84 Y.G. Wang, X. Zhuang / Appl. Comput. Harmon. Anal. 48 (2020) 64–95
Fig. 3. Filters {â; b̂1, b̂2} and functions {α̂; β̂1, β̂2}.

b̂2(ξ) :=
{

0, |ξ| < 1
4 ,

sin
(
π
2 ν(4|ξ| − 1)

)
, 1

4 ≤ |ξ| ≤ 1
2 ,

(4.1c)

where

ν(t) := χ3(t)2 = t4(35 − 84t + 70t2 − 20t3), t ∈ R,

as in [21, Chapter 4]. It can be verified that

|â(ξ)|2 + |b̂1(ξ)|2 + |b̂2(ξ)|2 = 1 ∀ξ ∈ [0, 1/2],

which implies (2.14). The associated framelet generators Ψ = {α; β1, β2} satisfying (2.1) and (2.13) is 
explicitly given by

α̂(ξ) =

⎧⎪⎨⎪⎩
1, |ξ| < 1

4 ,

cos
(
π
2 ν(4|ξ| − 1)

)
, 1

4 ≤ |ξ| ≤ 1
2 ,

0, else,
(4.2a)

β̂1(ξ) =

⎧⎪⎨⎪⎩
sin

(
π
2 ν(4|ξ| − 1)

)
, 1

4 ≤ |ξ| < 1
2 ,

cos2
(
π
2 ν(2|ξ| − 1)

)
, 1

2 ≤ |ξ| ≤ 1,
0, else,

(4.2b)

β̂2(ξ) =

⎧⎪⎨⎪⎩
0, |ξ| < 1

2 ,

cos
(
π
2 ν(2|ξ| − 1)

)
sin

(
π
2 ν(2|ξ| − 1)

)
, 1

2 ≤ |ξ| ≤ 1,
0, else.

(4.2c)

Then, â, b̂1, b̂2, α̂, ̂β1, ̂β2 are all in C4−ε(R) with arbitrarily small and positive ε [21, p. 119], and supp α̂ ⊆
[0, 1/2] and supp β̂n ⊆ [1/4, 1], n = 1, 2. Also, the refinable function α̂ satisfies (2.12).

Fig. 3a shows the pictures of the filters â, b̂1 and b̂2 of (4.1). Fig. 3b shows the corresponding functions 
α̂, β̂1 and β̂2, whose supports are subsets of [0, 1/2], [1/4, 1] and [1/2, 1].

For the unit sphere S2 ⊂ R3, the Laplace–Beltrami operator Δ has the spherical harmonics {Y�,m : � ∈
N0, |m| ≤ �} as eigenfunctions with (negative) eigenvalues −λ2

�,m = −�(� + 1):
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Δ Y�,m = −�(� + 1)Y�,m, m = −�, . . . , �, � = 0, 1, . . . ,

see e.g. [20, Chapter 1] for details. Let (θ, ϕ) with θ ∈ [0, π] and ϕ ∈ [0, 2π) be the spherical coordinates for 
x ∈ S2, satisfying x = (cos θ sinϕ, cos θ sinϕ, sin θ). Using the spherical coordinates, the spherical harmonics 
can be explicitly written as

Y�,m(x) := Y�,m(θ, ϕ) :=

√
2� + 1

4π
(�−m)!
(� + m)! P

(m)
� (cos θ) eimϕ, m = −�, . . . , �, � = 0, 1, . . . ,

where P (m)
� (t), −1 ≤ t ≤ 1, is the associated Legendre polynomial of degree � and order m, see e.g. [20]. 

Let μ be the surface measure on the sphere S2 satisfying μ(S2) = 1. Then {(Y�,m, λ�,m)}m≤|�|,�∈N0 forms an 
orthonormal eigen-pair for L2(S2, μ) := L2(S2). The (diffusion) polynomial space Πn is given by

Πn := span{Y�,m : λ�,m ≤ n} = span{Y�,m : � < n,m = −�, . . . , �}. (4.3)

The continuous framelets ϕj,y(x), ψ1
j,y(x) and ψ2

j,y(x) on the sphere S2 are

ϕj,y(x) :=
∞∑
�=0

�∑
m=−�

α̂

(
λ�,m

2j

)
Y�,m(y)Y�,m(x),

ψn
j,y(x) :=

∞∑
�=0

�∑
m=−�

β̂n

(
λ�,m

2j

)
Y�,m(y)Y�,m(x), n = 1, 2.

By (iv) or (v) of Theorem 2.1 and the construction of Ψ and η in (4.2) and (4.1), the continuous framelet 
system CFSJ(Ψ) = CFSJ({α; β1, β2}) on S2 is a tight frame for L2(S2) for any J ∈ Z.

Given QNj
a quadrature rule on S2, the discrete framelets ϕj,k(x), ψ1

j,k(x) and ψ2
j,k(x) on the sphere S2

are

ϕj,k(x) := √
ωj,k

∞∑
�=0

�∑
m=−�

α̂

(
λ�,m

2j

)
Y�,m(xj,k)Y�,m(x),

ψn
j,k(x) := √

ωj+1,k

∞∑
�=0

�∑
m=−�

β̂n

(
λ�,m

2j

)
Y�,m(xj+1,k)Y�,m(x), n = 1, 2.

As the supports of α̂, β̂1 and β̂2 are subsets of [0, 1/2], [0, 1] and [0, 1], ϕj,k ∈ Π2j−1 and ψ1
j,k, ψ

2
j,k ∈ Π2j . 

If QNj
is a polynomial-exact quadrature rule of degree 2j for all j ∈ Z, then by Corollary 2.6, the framelet 

system FSJ(Ψ, Q) = FSJ({α; β1, β2}, {QNj
}j≥J ) is a semi-discrete tight frame for L2(S2) for all J ∈ Z.

Fig. 4 shows the pictures of framelets ϕ6,y, ψ1
6,y and ψ2

6,y on S2 at scale j = 6 and with “translation” at 
y = (0, 0, 1). It shows that ψ1

6,y and ψ2
6,y are more “concentrated” at the north pole, which enables them 

to carry more detailed information in data analysis.

4.2. Numerical examples

In this subsection, we show three numerical examples on M = S2 of the FMT algorithms using the 
framelet system FSJ(Ψ, Q) = FSJ({α; β1, β2}, Q) as presented in Subsection 4.1. The three examples illus-
trate for FMTs: the approximation for smooth functions, the multiscale decomposition for a topological 
data set and the computational complexity for CMB data.
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Fig. 4. Framelets on S
2, scale j = 6 and translation at y = (0, 0, 1).

Let Ψ = {α; β1, β2} be the framelet generators associated with the filter bank η = {a; b1, b2} given in 
Section 4.1, and Q = {QNj

}Jj=J0
a sequence of point sets on the sphere. We can define a sequence of framelet 

systems FSj(Ψ, Q), j = J0, . . . , J , as (2.22), which can be used to process data on the sphere as described in 
Algorithms 1 and 2. A data sequence v sampled from a function on QNJ

at the finest scale J may not be a 
(ΛJ , NJ)-sequence as required by our decomposition and reconstruction algorithms. We can preprocess the 
data by projecting v onto Π2J to obtain a (ΛJ , NJ )-sequence using the inverse discrete Fourier transform 
on the manifold, which splits the data sequence into the approximation coefficient sequence vJ at the finest 
scale J and the projection error sequence w̃J = v−vJ . More precisely, the data sequence v is projected onto 
Π2J by vJ = (F∗

JFJ)−1F∗
Jv using the spherical harmonic transform FJ and the adjoint spherical harmonic 

transform F∗
J . Both of FJ and F∗

J can be implemented fast, in order O
(
NJ

√
logNJ

)
, see e.g. Keiner, Kunis 

and Potts [42]. See Example 4.1.
When QNj

is a (polynomial-exact) quadrature rule of order 2j for all j = J0, . . . , J , as guaranteed 
by Theorem 3.1, we can decompose the (ΛJ , NJ)-sequence vJ and obtain the framelet coefficient se-
quences w1

J−1, w2
J−1, . . ., w1

J0
, w2

J0
, vJ0 by the FMT decomposition in Algorithm 1. Furthermore, by 

using adjoint FFT transforms, we can exactly reconstruct vJ from the decomposed coefficient sequences 
(w1

J−1, . . . , wr
J−1, . . . , w1

J0
, . . . , wr

J0
, vJ0) using the FMT reconstruction in Algorithm 2. Once vJ is obtained, 

the sequence v = vJ + w̃J will be constructed with the pre-computed projection error w̃J . See Example 4.3
for illustration of these steps.

For comparison and illustration of our algorithms in practice, we also show numerical examples of 
fast framelet algorithms with non-polynomial-exact quadrature rules. When QNj

are not polynomial-exact 
quadrature rules, e.g. SP (generalized spiral points) or HL (HEALPix points) in Fig. 5, inverse FFT instead 
of adjoint FFT (see Lines 1 and 4 of Algorithm 2) is needed to obtain the discrete Fourier coefficients. In 
this case, errors may appear in each stage of the fast algorithms as the framelets might not be tight, due 
to the numerical integration errors for polynomials of the point sets. But in practice, one could record such 
error in each stage. As this paper is focused on polynomial-exact quadrature rules, we do not get into details 
on errors for framelets with non-polynomial-exact rules.

We use four types of point sets on S2 as follows.

(1) Gauss–Legendre tensor product rule (GL) [40]. The Gauss–Legendre tensor product rule is a 
(polynomial-exact but not equal area) quadrature rule QN = {(ωk, xk) : k = 0, . . . , N} on the sphere 
generated by the tensor product of the Gauss–Legendre nodes on the interval [−1, 1] and equi-spaced 
nodes on the longitude with non-equal weights. The GL rule is a polynomial-exact quadrature rule of 
degree n satisfying N = n ×(�(n −1)/2� +1) (�(n −1)/2� +1 nodes on [−1, 1] and n nodes on longitude). 
Fig. 5a shows the GL rule with n = 32 and N = 512.
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Fig. 5. Point sets on the sphere for Gauss–Legendre rule (GL), symmetric spherical designs (SD), generalized spiral points (SP), 
and HEALPix (HL).

(2) Symmetric spherical designs (SD) [72]. The symmetric spherical design is a (polynomial-exact) quadra-
ture rule QN = {(ωk, xk) : k = 0, . . . , N} on the sphere S2 with equal weights ωk = 1/N . The points 
are “equally” distributed on the sphere. The SD rule is a polynomial-exact quadrature rule of degree n
with N ∼ n(n − 1)/2. Fig. 5b shows the SD rule with n = 32 and N = 498.

(3) Generalized spiral points (SP) [5]. The rule of generalized spiral points QN = {(1/N, xk) : k = 0, . . . , N}
is given by xk = (cos(1.8

√
Nθk) sin θk, sin(1.8

√
Nθk) sin θk, cos θk) where θk = arccos(1 − (2k − 1)/N)

for k = 0, . . . , N . We assign equal weights to the SP nodes as they are equal area. SP with equal weights 
is, however, not a polynomial-exact quadrature rule on the sphere. In the numerical test, to compare 
with polynomial-exact quadrature rules, we use the SP points with N = 22j+1 nodes at scaling level j. 
Fig. 5c shows the SP points with N = 512.

(4) HEALPix points2 (HL) [30]. HL is a hierarchical equal area isolatitude point configuration on the 
sphere. At each resolution k where k is a positive integer, the number of HL points N(k) = 12 × 22k, 
and the HL partition of the resolution k is nested in that of the resolution k + 1. As SP, we assign 
equal weights to the HL points as nodes of SP are equally distributed. HL with equal weights is not a 
polynomial-exact quadrature rule on the sphere either. For j ≥ 0, let kj be the smallest positive integer 
such that 22j+1 ≤ 12 × 22kj . In the numerical test, to compare with polynomial-exact quadrature rules, 
we use the HL points of resolution 2kj with Nj = 12 ×22kj nodes at the scaling level j for j ≥ 0. Fig. 5d 
shows the HL points of resolution 24 = 16 on S2 with N(4) = 768.

Example 4.1 (Approximation of smooth functions). We illustrate the approximation ability of ϕj,k in the 
framelet system FSJ(Ψ) on S2 under different types of point sets for the following test functions of the 
combinations of normalized Wendland functions [13].

Let (t)+ := max{t, 0} for t ∈ R. The original Wendland functions are

φ̃n(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − t)2+, n = 0,

(1 − t)4+(4t + 1), n = 1,

(1 − t)6+(35t2 + 18t + 3)/3, n = 2,

(1 − t)8+(32t3 + 25t2 + 8t + 1), n = 3,

(1 − t)10+ (429t4 + 450t3 + 210t2 + 50t + 5)/5, n = 4.

The normalized (equal area) Wendland functions are

2 http :/ /healpix .sourceforge .net.

http://healpix.sourceforge.net
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Fig. 6. Projection term vJ (top row), error term wJ (middle row), and the equirectangular projection of the error for RBF f2 on 
S
2 using different quadrature rules, J = 7.

φn(t) := φ̃n

( t

τn

)
, τn :=

(3n + 3)Γ(n + 1
2 )

2 Γ(n + 1) , n ≥ 0.

The Wendland functions scaled this way have the property of converging pointwise to a Gaussian as n → ∞, 
see Chernih et al. [13]. Let z1 := (1, 0, 0), z2 := (−1, 0, 0), z3 := (0, 1, 0), z4 := (0, −1, 0), z5 := (0, 0, 1) and 
z6 := (0, 0, −1) be six points on S2 and define [47]

fn(x) :=
6∑

i=1
φn(|zi − x|), n ≥ 0 (4.4)

so that zi are the six centers of fn, where | · | is the Euclidean distance. Le Gia, Sloan and Wendland [47]
proved that fn ∈ Hn+ 3

2 (S2), where Hσ(S2) := {f ∈ L2(S2) :
∑∞

�=0
∑

|m|≤�(1 + �)2σ|f̂�,m|2} < ∞} is the 
Sobolev space with smooth parameter σ > 1. As the function fn has known smoothness, we can see from 
the approximation errors the dependence of tight framelets with different points sets on the smoothness 
of fn.

Given a point set QNJ
, we use fn on QNJ

as the data sequence v := (vk)
NJ

k=1, i.e. vk = fn(xj,k), and 
compute the projection vJ and projection error w̃J where v = vJ + w̃J .

Figs. 6a–6d show the 3D view pictures of projection vJ (top row), error wJ (middle row), and the 
equirectangular projection of the error (bottom row), using the four types of quadrature rules for f2. We 
observe that the distributions of errors are partly due to the collective effect of the NFSFT algorithms and 
the points sets used in FMT. We can observe that the errors by FMT with different quadrature rules show 
distinct distribution patterns.
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Table 1
Relative L2-errors of FMT for GL (NJ = 32, 640, exact for degree up to n = 255), 
SD (NJ = 32, 642, exact for degree up to n = 255), SP (NJ = 32, 768), and HL 
(NJ = 49, 152). SP and HL are with equal weights.

QNJ
f0 f1 f2 f3 f4

GL (32,640) 3.9572e–05 1.0630e–07 1.9294e–08 1.6813e–08 1.6681e–08
SD (32,642) 6.2013e–05 9.8473e–08 1.0125e–08 3.6211e–09 2.9568e–09
SP (32,768) 5.0854e–04 4.8888e–04 4.8297e–04 4.8112e–04 4.8053e–04
HL (49,152) 4.2954e–05 1.1370e–05 1.1449e–05 1.1421e–05 1.1453e–05

Table 1 shows the relative L2-error ‖v−vJ‖
‖v‖ (with Frobenius-norm) of the projections using the four types 

of point sets (1)–(4) in Fig. 5. The quadrature rules QNJ
with J = 7 for GL (NJ = 32, 640) and SD 

(NJ = 32, 642) are polynomial-exact quadrature rules of degree n = 255.
We observe that SD incurs smaller approximation errors than GL. The point sets QNJ

with J = 7
for SP (NJ = 32, 768) and HL (NJ = 49, 152) which are not polynomial-exact quadrature rules give worse 
approximation results than GL and SD. This demonstrates that using the polynomial-exact quadrature rules 
for framelets is more effective than using the non-polynomial-exact quadrature rules. Also, with the increase 
of the smoothness of the function fn, the approximation error of the tight framelets with polynomial-exact 
quadrature rules (GL and SD) becomes smaller.

Remark. The fact that the lack of polynomial-exactness of the quadrature for framelets leads to noticeably 
worse approximation errors was also observed in [45]. The dependence of L2 approximation errors of the 
tight framelets on smoothness of function space is consistent with that of filtered approximation on S2, see 
[51,56,65,69].

Example 4.2 (Multiple high-pass filters). To illustrate the role of using multiple high-pass filters played in a 
framelet system, we show a denoising experiment for restoring the signal f4 from a noisy signal f = f4 + g

using three different filter banks. Here f4 is given in (4.4) and g is a Gaussian white noise N(0, σ2) with 
standard deviation σ.

We sample f4 on the GL quadrature rules QNJ
with J = 6 to obtain a signal v6 on the sphere and then 

add the Gaussian noise g with standard deviation σ := σθ := θmaxx∈QNJ
f4(x), where θ is a parameter 

ranging from 0.05 to 0.20 to control the noise level σθ, that is, we choose σθ to be 5 to 20 percent of the 
maximal value of f4.

Let χ[cL,cR];εL,εR be the function supported on [cL− εL, cR + εR] as defined in [36, Eq. 3.1]. We construct 
three different filter banks η1, η2 and η3 with 1, 2 and 3 high-pass filters: the filter bank η1 = {a; b11}
determined by â := χ[−3/16,3/16];1/16,1/16 and b̂11 := χ[3/16,9/16];1/16,1/16, the filter bank η2 = {a; b12, b22}
by b̂12 := χ[3/16,3/8];1/16,1/8 and b̂12 := χ[3/8,9/16];1/16,1/16 and the filter bank η3 = {a; b13, b23, b33} by b̂13 :=
χ[3/16,5/16];1/16,1/16, b̂23 := χ[5/16,7/16];1/16,1/16, and b̂33 := χ[7/16,9/16];1/16,1/16. Sharing a low-pass filter a, 
each filter bank ηi corresponds to a framelet system FSJ(Ψk, Q) on the sphere, similar to FSJ(Ψ, Q) in 
Subsection 4.1.

Given the noisy data vθ = v6 + g with noise level σθ and a filter bank ηi, we apply Algorithm 1 to 
vθ with J = 6 and J0 = 4. We use a simple hard thresholding technique to the corresponding output 
high-pass (filtered) coefficient sequences with threshold value same as σθ and then apply Algorithm 2 to 
the thresholded coefficient sequences and obtain a reconstructed signal ṽ6. The performance of a framelet 
system for denoising is measured by the signal-to-noise ratio (with unit dB), denoted by SNR(v6, ̃v6) :=
20 log10

‖v6‖
‖ṽ6−v6‖ . The larger SNR, the more effective the framelet system for denoising is.

The results are reported in Table 2. We observe that the filter bank η2 brings more than 1 dB improvement 
compared to η1 by splitting b11 to b12 and b22, and the use of η3 brings about 0.5 dB improvement compared 
to η2. Note that we do not make any hard thresholding on the low-pass filter coefficient sequences. The 
results that η3 outperforms η2 and η2 outperforms η1 illustrate the advantage of using multiple high-pass 
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Table 2
Denoising performance in terms of SNR (dB) by the filter banks η1 = {a; b11}, η2 =
{a; b12, b22}, η3 = {a; b13, b23, b33}. The first column θ ranges from 0.05 to 0.20. The second 
column is the SNR of the original signal v6 and the noisy signal vθ . The third, fourth 
and fifth columns are the SNR of the original signal v6 and the reconstructed signal 
ṽ6 for the filter banks η1, η2 and η3.

θ SNR(v6, vθ) η1 η2 η3

0.05 17.12 19.58 20.82 21.25
0.10 11.09 13.66 14.92 15.37
0.15 7.57 10.25 11.54 12.00
0.20 5.07 7.78 9.09 9.56

filters in a framelet system for denoising. Also, using multiple high-pass filters allows more free parameters 
in the filter bank and more flexibility of the design of high-pass filters.

Example 4.3 (Multiscale analysis). We use the data set ETOPO1 of Earth surface (see Fig. 8) to illustrate 
the multiscale decomposition of the FMT algorithm using the GL rules. The data set ETOPO1 for the 
planar earth is based on 1 arc-minute global relief model of Earth’s surface that integrates land topography 
and ocean bathymetry by National Centers for Environmental Information (NCEI), see [2].

We sample the data set ETOPO1 at GL points QNJ
to obtain a data sequence v (see Fig. 7a) at the 

scaling level J = 9 with NJ = 786, 432 nodes. At level 8, the GL rule QN8 has N8 = 196, 608 nodes. At 
level 7, the GL rule QN7 has N7 = 49, 152 nodes. With the sequence Q = {QNj

: j = 7, 8, 9} of quadrature 
rules, we can define the sequence of framelet systems {FSj({α; β1, β2})}9

j=7 as described in Section 4.1.
Applying Algorithm 1 with the framelet systems {FSj({α; β1, β2})}9

j=7, we obtain the projection v9 (see 
Fig. 7b) and the error w9 (see Fig. 7c) at the finest level j = 9 satisfying v = v9 + w9.

At the level j = 8, the projection v9 is decomposed to the framelet approximation coefficient sequence 
v8 (see Fig. 7d) and the framelet detail coefficient sequences w1

8 and w2
8 (see Figs. 7e and 7f).

At the level j = 7, the approximation v8 is further decomposed to v7, w1
7, and w2

7 (see Figs. 7g–7i).
The pictures in Fig. 7 show that the framelet systems can decompose the input data into a good data ap-

proximation and elaborate data details at different resolutions. The higher-level projection gives the picture 
with higher resolution and incurs the smaller projection error. The pictures also verify the multiresolution 
structure of a sequence of tight framelet systems and thus demonstrate the ability of FMT for multiscale 
data analysis.

Example 4.4 (Computational complexity). In this example, we use the CMB data set (see Fig. 8) to illustrate 
the computational efficiency of the FMT algorithm. The CMB data are collected by Plank at HEALPix 
(HL) points of resolution 210 = 1024 with 12 × (210)2 = 12, 582, 912 nodes, see [1].

The sequence of HL point sets QNj
for j = 0, 1, . . . , 10 corresponds to a sequence {FSj(Ψ)}Jj=J0

of framelet 
systems with J0 ≥ 0 and with J up to 10. To illustrate the near linearity of the computational complexity 
for the FMT algorithms, we fix J0 = 0 and change J from 1 to 10. At level J , we use the CMB data at the 
nodes of QNJ

, NJ = 12 × (2J)2 as the data sequence vJ .
For each J ∈ {1, 2, . . . , 10}, we test the total time, the decomposition time and the reconstruction time 

of the FMTs described in Algorithms 1 and 2 associated with {FSj(Ψ)}Jj=J0
for the data set vJ . The results 

are reported in Table 3, where the numbers inside the brackets are the ratios of the time at level J to 
the time at level J − 1, 2 ≤ J ≤ 10. From the ratios in Table 3, we observe that the computational time 
(decomposition, reconstruction or total CPU time) grows almost linearly with respect to the size of the 
data. This illustrates that the computational steps of FMT are proportional to the size of the input data 
vJ , which is consistent with the analysis in Section 3.2.
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Fig. 7. Multiscale decomposition of the ETOPO1 data v on GL rule QNJ
with NJ = 523, 776 and J = 9. v = v9 +w9 (top row). The 

projection term v9 is decomposed as v8 + w1
8 + w2

8 (middle row), and the approximation v8 is further decomposed as v7 + w1
7 + w2

7
(bottom row).

Table 3
FMT CPU time v.s. number of input for CMB data (rounded). Quadrature rules in {QNj

}J
j=J0

are the HEALPix points with 
equal weights, J0 = 0, and 1 ≤ J ≤ 10. The row of tde is the CPU time of decomposition, the row of tre is the CPU time of 
reconstruction and the row of t = tde + tre is the total CPU time. The numbers inside brackets are the ratios t(NJ )

t(NJ−1)
(or tde(NJ )

tde(NJ−1)

or tre(NJ )
tre(NJ−1)

) of CPU time t(NJ ) (or tde(NJ ) or tre(NJ )) of level J to the CPU time t(NJ−1) of level J − 1. The numerical test is 
run under Intel Core i7 CPU @ 3.4 GHz with 32 GB RAM in OS X EI Capitan.

J 1 2 3 4 5 6 7 8 9 10
NJ 48 192 768 3,072 12,288 49,152 196,608 786,432 3,145,728 12,582,912
t 0.007 0.022 (3.2) 0.048 (2.2) 0.11 (2.2) 0.28 (2.6) 1.07 (3.8) 4.39 (4.1) 20.9 (4.8) 102.4 (4.9) 569.8 (5.6)
tde 0.003 0.010 (3.1) 0.021 (2.1) 0.04 (2.0) 0.10 (2.4) 0.35 (3.3) 1.33 (3.8) 5.86 (4.4) 26.8 (4.6) 129.9 (4.8)
tre 0.003 0.012 (3.4) 0.027 (2.3) 0.06 (2.4) 0.18 (2.8) 0.72 (4.1) 3.06 (4.2) 15.0 (4.9) 75.5 (5.0) 439.9 (5.8)

5. Final remarks

1) Besides the orthogonal polynomials (Fourier domain) approach, the usual time domain approach and the 
group-theoretical approach are other two widely used approaches. In the usual time domain approach, 
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Fig. 8. ETOPO1 data (left) and CMB data (right).

wavelets are restricted to intervals, squares, cubes or regular domains in higher dimensions. For instance, 
Cohen, Daubechies and Vial [17] constructed the wavelets on a compact interval similar to wavelets on R
by carefully handling generators on the boundary. Using the lifting schemes, Sweldens [66] constructed 
wavelets on irregular domains including compact intervals and surfaces. Continuous wavelets on the 
two-dimensional sphere S2 can also be achieved using the group of rotations SO(3), as shown by Freeden, 
Gervens and Schreiner [29] and Antonio and Vandergheynst et al. [3,4].

2) In high-dimensional (big) data analysis such as in denoising and inpainting of image and video, in 
order to avoid the boundary effect when estimating convolution with a filter, one usually exploits 
symmetric extension and periodization techniques for the data. The data can then be regarded as 
samples on the torus Td for which the convolution in time domain are implemented by the classical 
discrete Fourier transforms in the frequency domain. When data are sampled from the regular integer 
grid, the framelet filter bank transforms reduce to the classical framelet filter bank transforms in Rd, 
see e.g. [36], and the fast discrete Fourier transforms (FFT) are used for the fast implementation of 
framelet transforms. Multiscale analysis of data sampled at the regular integer grid has been widely used 
in inpainting, denoising, debluring, segmentation and so on. For data sampled at irregular grids, the 
nonequispaced fast Fourier transforms [44] provide an algorithmic realization of fast framelet transforms 
in our setting for framelet systems on L2(Td), which is also an active area of “irregular sampling” or 
“non-uniform sampling”. Besides, it is possible and promising to use lattice rules and QMC designs with 
low-discrepancy, see e.g. [23,24,63], to construct framelets in a high-dimensional torus.

3) The polynomial-exact quadrature rule simplifies the conditions and implementation for tight framelets. 
The choice of quadrature rules for tight framelets in Theorem 2.4 is in fact rather general. One can also 
consider non-polynomial-exact quadrature rules satisfying one of equivalence conditions (iv) and (v) in 
Theorem 2.4. These would bring flexibility when designing tight framelet systems on manifolds, as there 
are many quadrature rules with good geometric property and good approximation for numerical inte-
gration without the requirement of polynomial exactness, see e.g. QMC designs on the two-dimensional 
sphere [10], minimal energy points on a compact manifold [38]. Investigation into the construction of 
tight framelets and tight framelet filter banks for a manifold with these quadrature rules (not exact for 
polynomials) is significant.

4) In this paper, we assume M a compact Riemannian manifold and {(u�, λ�)}∞�=0 an orthonormal eigen-
pair for L2(M). In fact, our results can be extended to a more general setting, for example, metric 
measure spaces [48], graphs, meshes, which we will report elsewhere.

5) In the paper, the continuous framelets ϕj,y and ψn
j,y as well as the inner product for L2(M) can be 

complex-valued. In implementation, taking square-root does not affect the numerical results of the 
algorithm for framelet systems. On the other hand, to avoid the square-root of negative numbers, one 
can simply move the square-root of the weights from FMT decomposition to the FMT reconstruction. 
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In this way, weights are computed in one step without splitting ωj,k to 
√
ωj,k ·√ωj,k. Such treatment of 

weights as well as the further relaxation on the filter banks can be done (in both theory and practice) 
by using dual framelets.

6) Directional wavelets on the sphere based on group representations are given by [41,71]. We do not 
consider directional sensitivity of the framelet systems. It is desirable to incorporate directionality into 
our framelets on manifolds.
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