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ABSTRACT
In this paper, we first develop a digital shearlet theory which
is rationally designed in the sense that it is the digitalization of
the existing shearlet theory for continuum data. This shows that
shearlet theory indeed provides a unified treatment for the con-
tinuum and digital realm. Secondly, we discuss our implemen-
tation of the associated digital shearlet transform. This software
package called ShearLab is also rationally designed by provid-
ing various performance measures quantifying precision of the
reconstruction, tightness of the frame, robustness of the shearlet
transform, and other properties. Such quantitative performance
metrics allow us to tune parameters and objectively improve our
implementation as well as compare different directional trans-
form implementations.

Keywords— Digital shearlet theory, Parabolic Scaling,
Pseudo-Polar Grid, Shearlets, Test Measures.

1. INTRODUCTION

Wavelets are nowadays indispensable as a multiscale encoding
system for a wide range of more theoretically to more practi-
cally oriented tasks, since they provide optimal approximation
rates for smooth 1-dimensional functions/signals exhibiting sin-
gularities. Also the fact that they provide a unified treatment in
both the continuum as well as digital setting was essential for
their success. It can however be shown that wavelets – although
perfectly suited for isotropic structures – do not perform equally
well when dealing with anisotropic phenomena.

This fact has motivated the development of various types
of directional representation systems for 2-dimensional signals
(continuous and digital), e.g., [2, 3], that are capable of resolv-
ing edge- or curve-like features which separate smooth regions
in a precise and more economical (sparse) way. Among all these
systems, the shearlet system (see [5, 6]) is the first directional
representation system which – in addition to the aforementioned
favorable properties – provides a unified treatment for the con-
tinuum and digital world similar to wavelets.

In this paper, we will make the notion of a digital shearlet
transform precise. We will accompany our theoretical consider-
ations with a publicly available software-package called Shear-
Lab, thereby also supporting the philosophy of ‘reproducible
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research’ [4]. In addition, we provide an extensive testing pack-
age, which firstly shows the performance of our algorithm, and
secondly shall serve the community as performance measures
to allow a precise comparison with future implementations. All
presented algorithms and tests as well as codes for the displayed
figures and tables are provided at URL ShearLab.org.

2. THE DIGITAL SHEARLET TRANSFORM

In this section, we will introduce the digital shearlet transform
(DShT) of anN×N image, which cascades the following steps:

1) Pseudo-polar transform with oversampling factor of R
(we choose R = 8 in this paper) in the radial direction.

2) Multiplication by ‘density-compensation-style’ weights.
3) Decomposing the pseudo-polar-indexed array into rect-

angular subbands with additional 2D-iFFT.
This is an exact analogy of the continuum domain shearlet trans-
form [5]. With a careful choice of the weights and the windows,
this transform is an isometry. Then the inverse transform can be
computed by merely taking the adjoint in each step.

2.1. Weighted Pseudo-Polar Transforms

To address 1) and 2), given an N × N image I , our goal is to
choose weights w : ΩR → R+ so that

N/2−1∑
u,v=−N/2

|I(u, v)|2 =
∑

(ωx,ωy)∈ΩR

w(ωx, ωy) · |Î(ωx, ωy)|2, (1)

where Î(ωx, ωy) is the pseudo-polar Fourier transform given by

Î(ωx, ωy) =

N/2−1∑
u,v=−N/2

I(u, v)e−
2πi
RN+1 (uωx+vωy)

and ΩR = Ω1
R ∪ Ω2

R is the pseudo-polar grid with

Ω1
R = {(− 4`k

RN ,
2k
R ) : −N2 ≤ ` ≤

N
2 , −

RN
2 ≤ k ≤

RN
2 },

Ω2
R = {( 2k

R ,−
4`k
RN ) : −N2 ≤ ` ≤

N
2 , −

RN
2 ≤ k ≤

RN
2 },

and R ≥ 2 is the oversampling factor. These grids are illus-
trated in Figure 1. Notice that the center C = {(0, 0)} ap-
pears N + 1 times in Ω1

R and Ω2
R, and the points on the seam



Ω1
R Ω2

R

Fig. 1. The pseudo-polar grid for N = 4 and R = 4.

lines S1
R = {(− 2k

R ,
2k
R ) : −RN2 ≤ k ≤ RN

2 , k 6= 0} and
S2
R = {( 2k

R ,−
2k
R ) : −RN2 ≤ k ≤ RN

2 , k 6= 0} appear in
both Ω1

R and Ω2
R. Choosing the weights carefully, the follow-

ing ‘Plancherel theorem’ – similar to the one for the discrete
Fourier transform – can be proved for the pseudo-polar grid
ΩR = Ω1

R ∪ Ω2
R.

Theorem 1 Let N be even, and let w : ΩR → R+ be a weight
function. Then (1) holds if and only if, for all −N + 1 ≤ u, v ≤
N − 1, the weights w satisfy

δ(u, v) = w(0, 0)

+ 4
∑

`=0,N/2

RN/2∑
k=1

w( 2k
R ,−

4`k
RN ) cos( 2ku

R(RN+1) ) cos( 4`kv
RN(RN+1) )

+ 8

N/2−1∑
`=1

RN/2∑
k=1

w( 2k
R ,−

4`k
RN ) cos( 2ku

R(RN+1) ) cos( 4`kv
RN(RN+1) )

and, for all (ωx, ωy) ∈ ΩR, the weights w satisfy the symmetry
conditionsw(ωx, ωy) = w(ωy, ωx), w(ωx, ωy) = w(−ωx, ωy),
and w(ωx, ωy) = w(ωx,−ωy).

2.2. Recommended Choice of Weights

To avoid high complexity in the computation of the weights
satisfying Theorem 1, we relax the requirement for exact iso-
metric weighting, however instead represent the weights not
as the solution of a large system of equations, but in terms of
an undercomplete basis for functions on the pseudo-polar grid.
We compute the coefficients in this expansion once for a given
problem size; then hardwire them in the algorithm. For the
present algorithm, we expand using 7 functions w1, . . . , w7 on
the pseudo-polar grid such that

∑7
j=1 wj(ωx, ωy) 6= 0 for each

(ωx, ωy) ∈ ΩR:
Center: w1 = 1(0,0) and w2 = 1{(ωx,ωy):|k|=1},
Boundary: w3 = 1{(ωx,ωy):|k|=NR/2, ωx=ωy}

and w4 = 1{(ωx,ωy):|k|=NR/2, ωx 6=ωy},
Seam lines: w5(ωx, ωy) = |k| · 1{(ωx,ωy):1<|k|<NR/2, ωx=ωy}

and w6 = 1{(ωx,ωy):|k|=NR/2−3, ωx=ωy},
Interior: w7(ωx, ωy) = |k| · 1{(ωx,ωy):1<|k|<NR/2, ωx 6=ωy}.
Notice that here we use (ωx, ωy) and (k, `) interchangeably.
The weighting generated by our recommended choice of co-
efficients for w1, . . . , w7 is displayed in Figure 2.

Fig. 2. Recommended weighting of the pseudo-polar grid.

2.3. Digital Shearlets on the Pseudo-Polar Grid

To detail 3), let W0 be the Fourier transform of the Meyer scal-
ing function satisfying supp W0 ⊆ [−4jR , 4jR ] with jR :=
−dlog4(R/2)e, and let V0 be a ‘bump function’ satisfying
supp V0 ⊆ [−4jR − 1/2, 4jR + 1/2] with V0(x) ≡ 1 for |x| ≤
4jR , for which numerous choices exist. Then we define the scal-
ing function φ for the digital shearlet system to be

φ̂(ξ1, ξ2) = W0(ξ1)V0(ξ2), (ξ1, ξ2) ∈ R2.

We further choose W to be the Fourier transform of the Meyer
wavelet function satisfying supp W ⊆ [−4jR+1,−4jR−1] ∪
[4jR−1, 4jR+1], and V to be a ‘bump’ function satisfying
supp V ⊆ [−1, 1] and |V (ξ− 1)|2 + |V (ξ)|2 + |V (ξ+ 1)|2 = 1
for all |ξ| ≤ 1 and ξ ∈ R. Then the generating shearlet ψ for
the digital shearlet system on Ω2

R is defined as

ψ̂(ξ1, ξ2) = W (ξ1)V ( ξ2ξ1 ), (ξ1, ξ2) ∈ R2.

Before stating the definition of digital shearlets, we first par-
tition the set ΩR beyond the already defined partitioning into
Ω1
R and Ω2

R by setting Ω1
R = Ω11

R ∪ C ∪ Ω12
R and Ω2

R =
Ω21
R ∪ C ∪ Ω22

R , where

Ω11
R = {(− 4`k

RN ,
2k
R ) : −N2 ≤ ` ≤

N
2 , 1 ≤ k ≤ RN

2 },
Ω12
R = {(− 4`k

RN ,
2k
R ) : −N2 ≤ ` ≤

N
2 , −

RN
2 ≤ k ≤ −1},

Ω21
R = {( 2k

R ,−
4`k
RN ) : −N2 ≤ ` ≤

N
2 , 1 ≤ k ≤ RN

2 },
Ω22
R = {( 2k

R ,−
4`k
RN ) : −N2 ≤ ` ≤

N
2 , −

RN
2 ≤ k ≤ −1}.

The number of sampling points in radial and angular direction
affected by a window at scale j and shear s is now given by

L1
j =

{
4j+jR−1R

2 15 + 1 : 0 ≤ j < dlog4Ne − jR,
bR2 (N − 4j+jR−1)c+ 1 : j = dlog4Ne − jR,

and

L2
j,s =

{
2−jN + 1 : −2j < s < 2j ,
2−j N2 + 1 : s ∈ {−2j , 2j}.

We further defineRj,s to be a rectangle given by

Rj,s ={((L1
j )
−14j(R/2)r1,−(L2

j,s)
−1(N/2j+1)r2) :

r1 = 0, . . . ,L1
j − 1, r2 = 0, . . . ,L2

j,s − 1},

and choose the low frequency rectangle to be

R = {(r1, r2) : r1 = −1, . . . , 1, r2 = −N
2
, . . . ,

N

2
}.

We are now ready to define digital shearlets.



Definition 1 At scale j ∈ {0, . . . , dlog4Ne − jR}, shear s =
{−2j , . . . , 2j}, and spatial positionm ∈ Rj,s, the digital shear-
lets on the cone Ω2

R are defined by

σ21
j,s,m(ωx, ωy) =

C(ωx, ωy)√
|Rj,s|

W (4−jωx)V (s+ 2j
ωy
ωx

)

· χΩ21
R

(ωx, ωy) e−2πim′(4−j 2k
R ,−2j+1 `

N ),

where

C(ωx, ωy) =


1 : (ωx, ωy) 6∈ S1

R ∪ S2
R,

1√
2

: (ωx, ωy) ∈ (S1
R ∪ S2

R) \ C,
1√

2(N+1)
: (ωx, ωy) ∈ C.

The shearlets σ11
j,s,m, σ

12
j,s,m, σ

22
j,s,m on the remaining cones are

defined accordingly by symmetry with equal indexing sets. For
n ∈ R, we further define the functions

ϕιn(ωx, ωy) =
C(ωx, ωy)√
|R|

W0(ωx)V0(ωy)

· χΩ21
R

(ωx, ωy) e−in
′( k3 ,

`
N+1 ), ι = 1, 2.

Summarizing, we call the system

{ϕιn : ι = 1, 2, n ∈ R} ∪ {σ11
j,s,m, σ

12
j,s,m, σ

21
j,s,m, σ

22
j,s,m :

j ∈ {0, . . . , dlog4Ne − jR}, s = {−2j , . . . , 2j},m ∈ Rj,s}
the digital shearlet system, and denote it by DSH.

This system has the following desirable property:

Theorem 2 The digital shearlet system DSH defined in Defi-
nition 1 forms a tight frame for functions J : ΩR → C.

3. QUANTITATIVE TEST MEASURES

We now introduce several performance measures, which shall
provide a means to quantify the performance of our algorithm, a
framework for tuning and improving our algorithm, and a basis
for comparison of all parabolic scaling algorithms.

In the following, P shall denote the pseudo-polar transform,
w the weighting on the pseudo-polar grid, W the windowing
with additional iFFT, and S = W

√
wP the shearlet transform.

[D1] Algebraic Exactness. We require the transform to be the
precise implementation of a theory for digital data on a
pseudo-polar grid. Our quality measure for this will be
the Monte Carlo estimate for the operator norm ‖W ?W−
Id‖op given by Malg = maxi=1,...,5

‖W?WJi−Ji‖2
‖Ji‖2 ,

where {Ji : i = 1, . . . , 5} is a sequence of 5 random
images on a pseudo-polar grid for N = 512 and R = 8
with standard normally distributed entries.

[D2] Isometry of Pseudo-Polar Transform. To measure the
closeness to being an isometry, let I1, . . . , I5 be 5 ran-
dom images I1, . . . , I5 of size 512 × 512 with standard
normally distributed entries. Then we define the follow-
ing measures:

• Closeness to tightness. Our quality measure will
here be the Monte Carlo estimate for the opera-
tor norm ‖P ?wP − Id‖op given by Misom1

=

maxi=1,...,5
‖P?wPIi−Ii‖2

‖Ii‖2 .

• Quality of preconditioning. Our quality measure
will be the spread of the eigenvalues of the Gram
operator P ?wP given by Misom2

= λmax(P?wP )
λmin(P?wP ) .

• Invertibility. Our quality measure will be the Monte
Carlo estimate for the invertibility of the opera-
tor
√
wP using conjugate gradient method G√wP

(residual error is set to be 10−6) given byMisom3
=

maxi=1,...,5
‖G√wP

√
wPIi−Ii‖2
‖Ii‖2 .

We expect a trade-off between the oversampling rate and
the closeness to being an isometry. Note that we do not
take the oversampling rate into account in these measures,
but would like to mention that this rate will instead affect
the measure for speed [D4].

[D3] Tight Frame Property. We now combine [D1] and [D2]
to allow comparison with other transforms. Let I1, . . . , I5
be a sequence of 5 random images of size 512× 512 with
standard normally distributed entries. Our quality mea-
sure will be the Monte Carlo estimate for ‖S?S − Id‖op
given by Mtight1 = maxi=1,...,5

‖S?SIi−Ii‖2
‖Ii‖2 as well

as using conjugate gradient G√wP given by Mtight2 =

maxi=1,...,5
‖G√wPW?SIi−Ii‖2

‖Ii‖2 .

[D4] Speed. We test the speed up to a size of N = 1024
which will be enough for computing the complexity of
our algorithm. Generate a sequence of 6 random im-
ages Ii, i = 5, . . . , 10 of size 2i × 2i with standard nor-
mally distributed entries. Let si be the speed of S ap-
plied to Ii. Our hypothesis is that the speed behaves like
si = c · (22i)d. To introduce appropriate measures, let d̃a
be the average slope of the line, which is a least square fit
to the curve i 7→ log(si), and let fi be the 2D-FFT ap-
plied to Ii. Our quality measure will then be three-fold:

• Complexity: Mspeed1 = d̃a
2 log 2 .

• The Constant: Mspeed2 = 1
6

∑10
i=5

si
(22i)Mspeed,1

.

• Comparison with 2D-FFT: Mspeed3 = 1
6

∑10
i=5

si
fi

.

[D5] Robustness. We will analyze two different types of ro-
bustness which we believe are the most common impacts
on a sequence of transform coefficients. Let I be the reg-
ular 512×512 sampling of a Gaussian function with mean
0 and variance 512 on {−256, 255}2. Then we consider
the resilience to

• Thresholding. Our quality measure will be the curve
Mthresk,pk

=
‖G√wPW? thresk,p SI−I‖2

‖I‖2 , k = 1, 2,

where thres1,p1 discards 100 · (1 − 2−p1) percent
of the coefficients (p1 = [2 : 2 : 10]) and thres2,p2



sets all those coefficients to zero with absolute val-
ues below the threshold m(1 − 2−p2) with m be-
ing the maximal absolute value of all coefficients
(p2 = [0.001 : 0.01 : 0.05]).
• Quantization. Our quality measure will be
Mquant,q =

‖G√wPW? quantq SI−I‖2
‖I‖2 , where q =

[8 : −0.5 : 6] and quantq(c) = round(c/(m/2q)) ·
(m/2q).

4. TEST RESULTS

In this section, we provide numerical results for the quantitative
measures in [D1]–[D5] of our present implementation.

4.1. Results for Tests [D1]–[D3]

Table I presents the performance with respect to the quantitative
measures in [D1]–[D3].

TABLE I. RESULTS FOR [D1]–[D3]
Malg Misom1

Misom2
Misom3

Mtight1 Mtight2

6.6E-16 9.3E-4 1.834 3.3E-7 9.3E-4 3.8E-7

The quantity Malg ≈ 6.6E-16 confirms that the DSH is in-
deed up to machine precision a tight frame. The tightness defi-
ciency of Mtight1 ≈9.3E-4 (also Misom1

≈ 9.3E-4) mainly re-
sults from the isometry deficiency of the weighting. Evidently,
our weighting provides “almost isometry” propery. Further,
note that the condition number (Misom2 ≈ 1.834) of the Gram
matrix is quit close to 1, which allows us to employ the con-
jugate gradient method very efficiently to compute the inverse
of the shearlet transform S (Misom3

≈ 3.3E-7 and Mtight2 ≈
3.8E-7). Observe that there is a trade-off between the sophisti-
cation of the weights, the running time of S, and the smoothness
of the shearlets.

4.2. Timing Test [D4]

The timing performance measuring the complexityMspeed1 , the
constant Mspeed2 , and the comparison with 2D-FFT Mspeed3

are presented in Table II.

TABLE II. RESULTS FOR [D4]
Mspeed1 Mspeed2 Mspeed3

1.323 1.5E-6 507.928

Superficially, these measures would seem to say that our im-
plementation has sublinear running time characteristics, scaling
approximately asN , for anN×N image. However, we believe
this is simply a start-up effect caused by the significant over-
head that the implementation imposes on very small problems,
which becomes less important for large problems. For the same
reason, we don’t believe that the factor of 507 comparison to
running time of the FFT adequately describes the comparison
for large problem sizes N ; the comparison gets much more fa-
vorable to the DShT as N grows large.

4.3. Robustness Test [D5]

Table III presents the measurements concerning [D5].

TABLE III. RESULTS FOR [D5]
Mthres1,p1

1.5E-8 7.2E-8 2.5E-5 0.001 0.007
Mthres2,p2

0.005 0.039 0.078 0.113 0.154
Mquant,q 0.034 0.047 0.057 0.071 0.109

This shows that even if we discard 100(1 − 2−10) ≈ 99.9%
of the shearlet coefficients, the original image is still well ap-
proximated by the reconstructed image (Mthres1,p1

≈ 0.007).
Thus the number of the significant coefficients is relative small
compared to the total number of shearlet coefficients. By the
second row, knowledge of the shearlet coefficients with abso-
lute value greater thanm(1−1/20.001) (≈ 0.1% of coefficients)
is sufficient for precise reconstruction (Mthres1,p2

≈ 0.005).
The quantization test Mquant,q shows the high resilience of the
DShT with respect to even quite coarse quantization.

5. CONCLUSIONS

We have developed and implemented a digital shearlet trans-
form based on a carefully designed digital shearlet theory,
which is the natural digitization of the continuum shearlet trans-
form. We further defined performance measures which could be
used to study not only our, but indeed any digital implementa-
tion of a general parabolic scaling algorithm.
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