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Abstract—Affine shear tight frames with 2-layer structure are
introduced. Characterizations and constructions of smooth
affine shear tight frames with 2-layer structure are provided.
Digital affine shear banks with 2-layer structure are then
constructed. The implementation of digital affine shear trans-
forms using the transition and subdivision operators are given.
Numerical experiments on image denoising demonstrate the
advantage of our digital affine shear filter banks with 2-layer
structure.

1. Introduction

Directional multiscale representation systems, e.g., dual-
tree complex wavelets, curvelets, shearlets, etc., have been
shown to be superb over many other multiscale represen-
tation systems, such as the tensor-product real-value ortho-
normal wavelets, in both theory (sparse approximation) and
applications, e.g., see [1], [4], [5], [6], [7], [11], [12], [14].

Motivated by the successful applications of affine shear
tight frames in [8], [15] and tensor product complex tight
framelets for image/video processing in [9], [10], in this pa-
per, we focus on the development and applications of affine
shear tight frames with 2-layer structure. The tensor product
complex tight framelet filter banks in [9], [10] (TP-CTF6

or TP-CTF↓6) are generated by the tensor product of a 1D
filter bank {a+, a−; b+1 , b

−
1 , b

+
2 , b
−
2 } having nice frequency

splitting property in the sense that a+, a− are concentrated
on the positive and negative low-frequency part of [−π, π),
respectively, while b+i , b

−
i are concentrated on the high-

frequency part of positive and negative axis of [−π, π),
respectively for i = 1, 2. In such a case, the directional
high-pass filters of TP-CTF6 or TP-CTF↓6 have a very
nice 2-layer structure. The high-pass filters in the inner
layer are ‘edge-like’ so that they can be used to capture
edge-like structure while the high-pass filters in the outer
layer are ‘oscillating’ so that they are suitable for ‘texture-
like’ structure. In this paper, we introduce affine shear
tight frames with 2-layer structure that can have arbitrarily
number of directional filters in both inner and outer layers.

2. Affine Shear Tight Frames with 2-Layer
Structure

Let us first introduce some necessary notation and defini-
tions. We use the following matrices throughout this paper:

E :=

[
0 1
1 0

]
, Sτ :=

[
1 τ
0 1

]
, Sτ :=

[
1 0
τ 1

]
,

Mλ :=

[
λ2 0
0 λ2

]
, Aλ :=

[
λ2 0
0 λ

]
, Dλ :=

[
1 0
0 λ

]
,

Nλ :=

[
λ−2 0

0 λ−2

]
, Bλ :=

[
λ−2 0

0 λ−1

]
,

where τ ∈ R and λ > 1. Sτ and Sτ are the shear operations
while Bλ = A−Tλ is the anisotropic dilation matrix, and
Nλ = M−Tλ is the isotropic dilation matrix. Note that Mλ =
AλDλ. Define N0 := N∪{0}. Let U be a d× d real-valued
invertible matrix. We use the compact notation

fU ;k,n(x) := |detU |1/2f(Ux− k)e−in·Ux, k, n, x ∈ Rd,

for encoding dilation by U , translation by k, and modulation
by n. We shall adopt the convention that fU ;k := fU ;k,0 and
fk,n := fId;k,n with Id being the d× d identity matrix.

An affine shear system is obtained by applying shear,
dilation, and translation to generators at different scales. To
balance the shear operations, we consider cone-adapted sy-
stems, e.g., [5], [7], which usually consists of three subsys-
tems: one subsystem covers the low frequency region, one
subsystem covers the horizontal cone {ξ = (ξ1, ξ2) ∈ R2 :
|ξ2/ξ1| ≤ 1}, and one subsystem covers the vertical cone
{ξ = (ξ1, ξ2) ∈ R2 : |ξ1/ξ2| ≤ 1} in the frequency plane.
Throughout the paper, ξ is used as a one- or two-dimensional
variable for the frequency domain with ξ = (ξ1, ξ2) if
ξ ∈ R2. The vertical-cone subsystem could be constructed
to be the ‘flipped’ version of the horizontal-cone subsystem.

Unlike the affine shear systems introduced in [8] that
have only a single layer structure, in this paper we introduce
affine shear systems with 2-layer structure. That is, at each
scale j, the horizontal and vertical cones are further divided
into an inner layer and an outer layer. More precisely, Let
{ϕ}∪Ψin

j ∪Ψout
j to be the set of generators in L2(R2) with

Ψin
j := {ψj,`,in(S−`·) : ` = −rinj , . . . , rinj },

Ψout
j := {ψj,`,out(S−`·) : ` = −routj , . . . , routj },

(1)

where rinj , r
out
j are nonnegative integers. An affine shear

system with 2-layer structure (and with the initial scale J)
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is then defined to be

ASJ(ϕ; {Ψin
j ,Ψ

out
j }∞j=J) = {ϕMJλ;k : k ∈ Z2}

∪ {hA
λin
j

;k
, hA

λin
j

E;k
: k ∈ Z2, h ∈ Ψin

j }∞j=J
∪ {hAλout

j
;k
, hAλout

j
E;k

: k ∈ Z2, h ∈ Ψout
j }∞j=J .

(2)

In a nutshell, at scale j, the set {ϕMJλ;k : k ∈ Z2} of
functions covers the low-frequency spectrum, {hAλι

j
;k, : k ∈

Z2, h ∈ Ψι
j} = {ψj,`,ι

S−`Aλι
j
;k

: ` = −rιj , . . . , rιj , k ∈ Z2} co-

vers the horizontal inner cone and outer cone for ι = in and
ι = out, respectively, while the ‘flipped’ system {hAλι

j
E;k, :

k ∈ Z2, h ∈ Ψι
j} = {ψj,`,ι

S−`Aλι
j
E;k

: ` = −rιj , . . . , rιj , k ∈ Z2}
covers the vertical inner cone and outer cone for ι = in and
ι = out, respectively. See Figure 1 for an illustration.

Figure 1. Inner square covered by ϕ. Inner horizontal cone covered by
ψj,`,in (colored area between inner square and middle square, 3 pieces).
Outer horizontal cone covered by ψj,`,out (colored area between middle
square and outer square, 5 pieces).

We say that ASJ(ϕ; {Ψin
j ,Ψ

out
j }∞j=J) is an affine shear

tight frame with 2-layer structure for L2(R2) if all ge-
nerators {ϕ} ∪ {Ψin

j ,Ψ
out
j }∞j=J ⊆ L2(R2) and for all

f ∈ L2(R2),

‖f‖22 =
∑

k∈Z2

∣∣∣
〈
f, ϕMJλ;k

〉∣∣∣
2

+

∞∑

j=0

∑

ι∈{in,out}

∑

h∈Ψιj

∑

k∈Z2

∣∣∣
〈
f, hAλι

j
;k

〉∣∣∣
2

+

∞∑

j=0

∑

ι∈{in,out}

∑

h∈Ψιj

∑

k∈Z2

∣∣∣
〈
f, hAλι

j
E;k

〉∣∣∣
2

.

(3)

Similar to [8, Theorem 2], one can give a complete
characterization of a sequence of affine shear systems to
be a sequence of affine shear tight frames. In this paper, we
are interested in the case that all generators are nonnegative
in the frequency domain (that is ϕ̂ ≥ 0 and ψ̂j,`,ι ≥ 0 for
all j, `, ι), since it leads to simple characterization conditions
and easy construction of digital affine shear filter banks. We
next detail the construction of such affine shear tight frames
with 2-layer structure.

Let ν ∈ C∞(R) be such that ν(x) = 0 for x ≤ −1,
ν(x) = 1 for x ≥ 1, and |ν(x)|2 + |ν(−x)|2 = 1 for all
x ∈ R. Then ν ∈ C∞(R) is a desired function. Define

ν [c,ε](ξ) :=





ν( ξ+cε ) if ξ < −c+ ε,

1 if − c+ ε ≤ ξ ≤ c− ε,
ν(−ξ+cε ) if ξ > c− ε.

The function ν [c,ε] is a smooth “bump” function supported
on [−c− ε, c+ ε].

Define γε = ν [1/2,ε] for 0 < ε ≤ 1/2 and αλ,t,ρ = ν [c,ε]

with c = λ−2(1− t/2)ρπ and ε = λ−2tρπ/2, where λ > 1,
0 < t ≤ 1, and 0 < ρ ≤ 1

1+2ε . Then αλ,t,ρ,γε ∈ C∞c (R). In
what follows, for simplicity, we shall omit the dependence
of αλ,t,ρ,γε on the parameters and simply write α,γ.

Define ϕ,ωinj ,ω
out
j as follows:

ϕ̂ := α⊗α,

ωoutj :=
√
|ϕ̂(λ−2(j+1)·)|2 − |ϕ̂(λ−2j−1·)|2,

ωinj :=
√
|ϕ̂(λ−2j−1·)|2 − |ϕ̂(λ−2j ·)|2.

(4)

For λ > 1, define `λ := bλ−(1/2+ε)c+1 = bλ+(1/2−ε)c,
λinj := λj−1/2, and λoutj := λj . Define for ξ 6= 0,

Γιj(ξ) :=

rιj∑

`=−rιj

(
|γ(λιj

ξ2
ξ1

+ `)|2 + |γ(λιj
ξ1
ξ2

+ `)|2
)
,

where rιj = `λιj for ι ∈ {in, out}. One can show that 0 <
Γιj ≤ 2, Γιj(E·) = Γιj(·), and Γιj(tξ) = Γιj(ξ) for ξ 6= 0.
Now define ψj,`,ι for ι ∈ {in, out} by

ψ̂j,`,ι = ωιj((S`Bλιj )
−1ξ)

γ(ξ2/ξ1)√
Γιj((S`Bλιj )

−1ξ)
. (5)

We can deduce the following result.
Theorem 1. Let J ≥ J0 ∈ Z and ASJ(ϕ, {Ψin

j ,Ψ
out
j }∞j=J)

be the affine shear system with 2-layer structure and with
ϕ,ψj,`,ι defined as in (4) and (5). Then for all J ≥ J0,
ASJ(ϕ, {Ψin

j ,Ψ
out
j }∞j=J) is an affine shear tight frame

with 2-layer structure for L2(R2).

3. Digital Affine Shear Filter Banks with 2-
Layer Structure

As proved in [8, Theorem 5], for an affine shear tight
frame, it can be subsampled from an affine tight Mλ-
framelet, which has a underlying filter bank structure. In
this section, we present the construction of the correspon-
ding digital affine shear filter banks with 2-layer structure
DASJ(a, {Binj ,Boutj }j=0,...,J−1), where {a,Binj ,Boutj } =
{a, bιj,`, bιj,`(E·), ` = −rιj , . . . , rιj}ι=in,out;j=0,...,J−1 is a
perfect reconstruction (PR) filter bank at scale j.

We define inner, middle, outer functions â, â1, â2 ∈
C(R2) by

â := ν [c0,ε0] ⊗ ν [c0,ε0],

â1 := ν [c1,ε1] ⊗ ν [c1,ε1],

â2 := ν [c2,ε2] ⊗ ν [c2,ε2].

(6)
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for some parameters 0 < c0 < c1 < c2 = π and ε0, ε1, ε2 >
0 satisfying c0 + ε0 ≤ π/2 (for downsampling by 2), (c1 +
ε1) − (c0 − ε0) ≤ π/2 (for downsampling by 4), and c1 −
ε1 − ε2 ≥ π/2 (for downsampling by 4). We identify the
function a as a function in C(T2) and it will serve as a
low-pass filter. The other two are auxiliary functions. One
can show that

∑

k∈Zd
|â2(ξ + 2πk)|2 = 1, ξ ∈ T2. (7)

In view of (4), we can define the inner and outer
functions bin, bout by

b̂out(ξ) :=
√
|â2(ξ)|2 − |â1(ξ)|2,

b̂in(ξ) :=
√
|â1(ξ)|2 − |â(ξ)|2.

(8)

Next, we apply the splitting technique to b̂ι for the con-
struction of high-pass filters bj,`,ι.

In practice, at scale j ≥ 0, instead of using 2j to
determine the total number of directions, we use 2kj for
some nonnegative integer. Define

γkj ,`(ξ) := γε(2
kjξ2/ξ1 + `),

Γkj (ξ) :=

2kj∑

`=−2kj

(
|γkj ,~̀(ξ)|2 + |γkj ,~̀(Eξ)|2

) (9)

with ε satisfying 0 ≤ ε ≤ π
c2+ε2

− 1/2 for downsampling
purpose. To guarantee smoothness of boundary, we further
split γkj ,`(ξ) to positive part γkj ,`,+ and negative part
γkj ,`,− of ξ1-axis. Define γkj ,`,±(ξ) := γkj ,`(ξ)χ{±ξ1>0}.

Now at scale j, given integers kinj , k
out
j for determi-

ning the number of directions, we can obtain functions

b̂ι(ξ)γ
kιj,`,±(ξ)√
Γkι
j
(ξ)

concentrating along certain direction in the

inner cone and the outer cone for ι = in and ι = out,
respectively. Note that b̂ι(ξ)γ

kιj,`,±(ξ)√
Γkι
j
(ξ)

are not 2πZ2-periodic

functions. We define bj,`,ι,± to be the 2πZ2-periodization of

b̂ι(ξ)γ
kιj,`,±(ξ)√
Γkι
j
(ξ)

as follows:

b̂j,`,ι,±(ξ) :=
∑

k∈Z2

b̂ι(ξ + 2πk)
γk

ι
j ,`,±(ξ + 2πk)√
Γkιj (ξ + 2πk)

, ξ ∈ T2.

The total number of high-pass filters bj,`,ι,+ and bj,`,ι,−,
ι = in, out, at this scale j is 2(2k

in
j + 2k

out
j + 2).

Given a sequence of nonnegative integers kιj , ι =
in, out; j = 0, . . . , J − 1 for some fixed integer J ≥ 0
with respect to the finest scale. Let M := 2I2, Aιj,1 :=

diag(4, 2k
ι
j ) and Aιj,2 := diag(2k

ι
j , 4). From above, we can

obtain a sequence of filter banks:

DASJ({a ↓ M,Binj ,Boutj }J−1
j=0 ) (10)

with Bιj := {bj,`,ι,±(·) ↓ Aιj,1, bj,`,ι,±(E·) ↓ Aιj,2 : |`| ≤ 2kιj}
for ι = in, out and j = 0, . . . , J − 1. Here M in a ↓ M
indicates the downsampling matrix for filtered coefficients

with respect to the low-pass filter a and Aj,1 indicates
downsampling matrix for filtered coefficients with respect
to the high-pass filter bj,`,ι,±(·), and so on. Now, in view of
(7) and (9), we have the following result.
Theorem 2. Retaining notation in this section. Then {a ↓

M,Binj ,Boutj } forms a digital affine shear filter bank
with 2-layer structure and with the perfect reconstruction
(PR) property:

|â(ξ)|2 +
∑

τ,ι

2
kιj∑

`=−2
kι
j

(
|b̂j,`,ι,τ (ξ)|2 + |b̂j,`,ι,τ (Eξ)|2

)
= 1,

â(ξ)â(ξ + 2πω) = 0, b̂j,`,ι,τ (ξ)b̂j,`,ι,τ (ξ + 2πω1) = 0,

for all ξ ∈ T2, |`| ≤ 2k
ι
j , ω ∈ [M−TZ2]∩[0, 1)2\{0}, and

ω1 ∈ [(Aιj,1)−TZ2] ∩ [0, 1)2\{0}, where ι ∈ {in, out}
and τ ∈ {+,−}.

4. Digital Affine Shear Transforms

Without loss of generality and for the simplicity of
presentation, we shall assume our data live on the dyadic
grids Λ(K) for K := ([0, . . . , 2K1−1]×[0, . . . , 2K2−1])∩N2

0

for K = (K1,K2) ∈ N2.
For an input data v : Λ(K) → C, a filter h, and a

sampling matrix M, we can define the transition operator
Th,Mv and the subdivision operator Sh,Mv as in [15]. Using
such two operators, for an input data vJ : Λ(K) → C and
a sequence DASJ({a ↓ M,Binj ,Boutj }J−1

j=0 ) of digital affine
shear filter banks with 2-layer structure as in (10), the (mul-
tilevel) forward digital affine shear transform decomposes
vJ to a sequence of filtered coefficients

{v0} ∪ {wj,`,ι,±,n : n = 1, 2, |`| ≤ 2k
ι
j , ι = in, out; }J−1

j=0 ,
(11)

as follows:

vj = Ta,Mvj+1 and wj,`,ι,±,n = Tbj,`,ι,±,n(En·),Aιj,nv
j+1

for |`| ≤ 2k
ι
j , n = 1, 2, ι = in, out; j = J − 1, . . . , 0,

where E1 = I2 and E2 = E. n = 1 is with respect
to the horizontal cone and n = 2 is with respect to the
vertical cone. The (multilevel) backward digital affine shear
transform reconstructs a sequence of filtered coefficients in
(11) back to a data sequence as follows:

v̊j+1 = Sa,Mv̊j +
∑

n,ι,

2
kιj∑

`=−2
kι
j

Sbj,`,ι,±,n(En·),Aιj,nw
j,`,ι,±,n.

for j = 0, . . . , J − 1 with v̊0 = v, n = 1, 2, ι = in, out.
We next estimate the redundancy rate of our affine shear

transforms, which is defined to be the ratio of the size of
the output coefficients to the size of the input data. For real-
value data v, due to the symmetry of filters, we only need
to compute {v0} ∪ {wj,`,ι,+,n : |`| ≤ 2k

ι
j , n = 1, 2, ι =

in, out}J−1
j=0 . Let N = 2K1+K2 be the size of the input data.

At scale j, due to downsampling processing, the coefficient
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matrix wj,`,ι,+,1 is on the lattice Λ(K̃1, K̃2), where K̃1 =
K1−(J−1−j)−kιj and K̃2 = K2−(J−j)−1, which is of
size N

2d(J−1−j) · 1

2
2+kι

j
. The total number of high-pass filtered

outputs wj,`,ι,+,n at scale j is 2(2k
ι
j+1 + 1). Consequently,

the size of the total output high-pass filtered coefficients at
scale j is:

∑

ι=in,out

N

22(J−1−j) ·
1

22+kιj
× 2(2k

ι
j+1 + 1)× 2.

The factor ‘×2’ at the end of the above equation is due to
that the outputs wj,`,ι,+,n are complex-valued. The low-pass
coefficient v0 is of size N/22J . Therefore, the redundancy
rate r is given by
(∑

ι

J−1∑

j=0

(2−k
ι
j + 2)

22j
+

1

22J

)
≤
(

1

2kmin+1
+ 1

)
16

3
≤ 8,

where kmin := min{kinj , koutj : j = 0, . . . , J − 1}.
Consequently, the redundancy rate of our digital af-

fine shear transforms does not increase with respect to
the number of directional filters and it is no more than
8. In fact, the more directional filters we have, the lower
redundancy rate of our digital affine shear transforms. For
kmin = 0, 1, 2, 3, 4, the redundancy rate is bounded by
8, 20

3 , 6,
17
3 ,

11
2 , respectively.

Since the implementations forward and backward digital
affine shear transforms are based on fast Fourier transforms,
one can show that the computational complexity is propor-
tional to rN logN for N the size of input data and r the
redundancy rate of the transform.

5. Numerical Experiments

In this section, we apply our digital affine shear trans-
forms for the tasks of image denoising.

We compare the performance of our systems to several
other state-of-the-art directional multiscale representation
systems. We use PSNR for performance comparison
and the local-soft thresholding technique as given
in [8, Section 6]. The parameters in (6) are set as
c0 = 0.2687π, ε0 = 0.1213π, c1 = 0.5874π, ε1 =
0.05π, c2 = π, ε2 = 0.0274π. We choose J = 5;
that is, we decompose to 5 scales. The shear parameter
{(kin4 , kout4 ), (kin3 , k

out
3 ), (kin2 , k

out
2 ), (kin1 , k

out
1 ), (kin0 , k

out
0 ))

is set to be {(2, 4), (2, 4), (1, 2), (1, 2), (1, 1)}). The
redundancy rate of such a system is about 6.39. The
convolution window size L to compute local coefficient
variance σw is set to be 4, i.e., we are using 9× 9 window
filter. To avoid boundary effect, we perform symmetric
extension for an image with 32 pixels. The results are
reported in Table 1.

One can see that for texture-rich images such as
Barbara and Fingerprint, our system outperforms
other systems. For relative smooth images such as Lena,
the performance of our system is comparable to DAS-1 and
TP-CTF6 (redundancy rate of 10 2

3 ), and outperforms other
systems.

512 × 512 Lena

σ
DAS-2
(6.39)

DAS-1
(6.36)

TP-CTF↓6
(2.67)

TP-CTF6
(10.67) DT-CWT DNST NSCT

5 38.36 38.14(0.22) 38.16(0.2) 38.37(-0.01) 38.25(0.11) 38.01(0.35) 37.71(0.65)
10 35.39 35.12(0.27) 35.22(-0.07) 35.48(-0.09) 35.19(0.2) 35.35(0.04) 34.92(0.47)
30 30.62 30.61(0.01) 30.38(0.11) 30.80(-0.18) 30.50(0.12) 30.68(-0.06) 30.32(0.3)
50 28.30 28.49(-0.19) 28.11(0.27) 28.54(-0.24) 28.22(0.08) 28.21(0.09) 28.02(0.28)
80 26.20 26.54(-0.34) 26.11(0.39) 26.47(-0.27) 26.15(0.05) 25.78(0.42) 25.80(0.4)

100 25.22 25.63(-0.41) 25.21(0.43) 25.52(-0.3) 25.20(0.02) 24.58(0.64) 24.71(0.51)
512 × 512 Barbara

σ DAS-2 DAS-1 TP-CTF↓6 TP-CTF6 DT-CWT DNST NSCT
5 37.77 37.32(0.45) 37.63(0.14) 37.84(-0.07) 37.37(0.4) 37.17(0.6) 36.96(0.81)
10 34.14 33.64(0.5) 33.97(0.17) 34.18(-0.04) 33.54(0.6) 33.62(0.52) 33.35(0.79)
30 28.73 28.33(0.4) 28.33(0.4) 28.38(0.35) 27.89(0.84) 27.97(0.76) 27.28(1.45)
50 26.29 26.01(0.28) 25.73(0.56) 25.71(0.58) 25.36(0.93) 25.31(0.98) 24.57(1.72)
80 24.10 23.99(0.11) 23.51(0.59) 23.53(0.57) 23.27(0.83) 22.96(1.14) 22.65(1.45)

100 23.08 23.07(0.01) 22.58(0.5) 22.64(0.44) 22.42(0.66) 22.06(1.02) 21.90(1.18)
512 × 512 Boat

σ DAS-2 DAS-1 TP-CTF↓6 TP-CTF6 DT-CWT DNST NSCT
5 36.93 36.63(0.30) 36.74(0.19) 36.92(0.01) 36.73(0.20) 36.04(0.89) 35.79(1.14)
10 33.27 33.01(0.26) 33.10(0.17) 33.41(-0.14) 33.19(0.08) 33.15(0.12) 32.65(0.62)
30 28.25 28.31(-0.06) 27.99(0.26) 28.44(-0.19) 28.23(0.03) 28.44(-0.19) 27.95(0.30)
50 26.08 26.24(-0.16) 25.79(0.29) 26.25(-0.17) 26.06(0.02) 26.23(-0.15) 25.94(0.14)
80 24.23 24.46(-0.23) 24.05(0.19) 24.41(-0.17) 24.22(0.01) 24.17(0.06) 24.11(0.12)

100 23.40 23.67(-0.27) 23.27(0.13) 23.58(-0.18) 23.39(0.00) 23.17(0.22) 23.21(0.18)
512 × 512 Fingerprint

σ DAS-2 DAS-1 TP-CTF↓6 TP-CTF6 DT-CWT DNST NSCT
5 36.27 35.20(1.07) 36.29(-0.02) 36.27(0.00) 35.82(0.44) 35.28(0.99) 34.93(1.34)
10 32.08 30.97(1.11) 32.23(-0.15) 32.10(-0.02) 31.74(0.34) 31.76(0.31) 31.33(0.75)
30 26.26 26.24(0.02) 26.37(-0.11) 26.06(0.21) 26.37(-0.11) 26.20(0.07) 26.13(0.13)
50 24.00 24.11(-0.11) 24.01(-0.01) 23.67(0.33) 23.95(0.05) 23.78(0.22) 23.89(0.11)
80 22.10 22.18(-0.08) 21.99(0.11) 21.66(0.44) 21.91(0.19) 21.63(0.47) 21.79(0.31)

100 21.25 21.30(-0.05) 21.09(0.16) 20.75(0.50) 21.01(0.24) 20.56(0.69) 20.77(0.48)

TABLE 1. PSNR of denoised Lena, Barbara, Boat, and
Fingerprint using different transforms. Numbers in the bracket are
the PSNR differences between DAS-2 and the current column. Positive

numbers indicate better performance of DAS-2.
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