Example 2
Construct a low-pass filter for dilation d=3, sum rule m=4 and vanishing moment n =3;
Then use matrix extension to derive its high-pass filter so that they form a filter bank with the perfect reconstruction property
and the corresponding tightframelet system having vanishing moment of order 3.
> | ![]() |
> | ![]() |
![]() |
|
![]() |
|
![]() |
(8.4.1) |
> | ![]() |
![]() |
(8.4.2) |
> | ![]() ![]() |
![]() |
|
![]() ![]() ![]() ![]() |
|
![]() ![]() ![]() ![]() ![]() |
(8.4.3) |
> | ![]() |
![]() |
(8.4.4) |
> | ![]() |
> | ![]() |
> | ![]() |
![]() ![]() |
(8.4.5) |
> | ![]() ![]() ![]() |
![]() |
(8.4.6) |
> | ![]() |
![]() |
(8.4.7) |
> | ![]() |
> | ![]() |
![]() |
(8.4.8) |
> | ![]() ![]() |
![]() |
|
![]() |
(8.4.9) |
> | ![]() |
![]() |
(8.4.10) |
> | ![]() |
> | ![]() |
> | ![]() |
![]() |
(8.4.11) |
> | ![]() |
> | ![]() |
> | ![]() |
![]() |
(8.4.12) |
> | ![]() |
![]() |
(8.4.13) |