Internationalizing Business – Best Practice in International Communication Training

Edited by Robert Gibson and John Bennett

University of St. Gallen, 2003
Richard D. Babcock
University of San Francisco, USA

Bertha Du-Babcock
City University of Hong Kong, Hong Kong

Integrating Language for Special Purpose (LSP) into Language-Based Communication Zones

In our earlier model (Babcock and Du-Babcock, 2001), we did not distinguish between LGP and LSP competencies but rather constructed their definitions to describe the overall second-language proficiencies of communicators. In this paper, we show how this framework focusing on national language can be extended to LSP language translation and how LSP translation can be included within and analyzed alongside national language translation in a unified framework.

Within a national language, speakers engage in intermixed conversations in two categories: language for general purposes (LGP) and language for specific purposes (LSP). LGP is the part of a national language that is understood and used by all speakers of the language. Within the framework of national language, interactants may use language for specific purposes to exchange messages within their specialized areas. For instance, attorneys’ use of legal terminology to discuss court cases is an example of LSP related to a professional genre. As de Beaugrande (1989: 6) stated, “...No LSP is composed exclusively of its own resources...every LSP overlaps heavily with at least one LGP and is free to use any part of the latter without express justification...” “Hence we have more of a continuum than a division between LSP and LGP” (Varantola, 1986, quoted in de Beaugrande, 1989).

With these views in mind, we define LGP, for the purposes of our paper, as a broad category of national language and LSP as the special languages contained within national language used in professional contexts (e.g., business and management, manufacturing), in companies and divisions of companies (e.g., stories, creeds, myths, policy manuals), in business translations (e.g., buyer-seller, negotiating partners, company-auditor), and in informal groups (e.g., slang, special meanings). We distinguish LSP genres as they are recognizable communicative events characterized by a set of communicative purposes identified and mutually understood by the members of identified language communities (Bhatia, 1993: 13). However, LSP languages can vary in scope from very wide (professional genre) to very narrow (customer ordering pattern in a fast-food restaurant).

To guide our analysis of the relative influence of LGP and LSP competencies on zone communication, we therefore divided these overall competencies into LGP and LSP competencies and have redrawn the Babcock and Du-Babcock model to take account of the LSP competencies of interactants (see Figure 1 and Figure 2). To promote continuity with the earlier framework, we have labeled and reformulated the original language-based communication zones according to LGP and LSP competencies (see Figure 1). For instance, individuals who are full bilinguals in LGP competency (Zone 3) are sub-classified (row 1) according to their LSP competencies, and the three combinations are: full bilingual in LGP with full bilingual in LSP as shown in Pattern 1; full bilingual in LGP with partial bilingual in LSP in Pattern 2; and full bilingual in LGP with limited LSP in Pattern 3. Using the same classification method, in total, there are nine patterns of parallel communication zones. We
also recognize that these distinctions may not accurately reflect the actual competency level of individual communicators (ranging from highest to lowest from the left to the right of the figure).

FIGURE 1
Patterns of Parallel Communication Zones

14
Figure 2 shows nine non-parallel zone communication patterns (Patterns 10-18) and is based on the same classification method of language matches between interactants’ LGP and LSP competencies as in Figure 1. Patterns 10, 11, and 12 indicate the possible language proficiency combinations of interactants who are fully bilingual in LGP with varying LSP competencies, such as the combination of one interactant with full LSP competency with another interactant with limited LSP competency as shown in Pattern 10. Similarly, Pattern 11 indicates the possible LSP competency combination between full and partial bilinguals. Patterns 13, 14, 15 show the possible combinations of interactants with partial LGP competency, but varying LSP competencies; and Patterns 16, 17, and 18 show the possible combinations of interactants with limited LGP competency and varying LSP competencies.

FIGURE 2
Patterns of Non-Parallel Communication Zones

<table>
<thead>
<tr>
<th>INTERLOCUTOR A</th>
<th>INTERLOCUTOR B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language Proficiency in General</td>
<td>Language Proficiency in LGP</td>
</tr>
<tr>
<td>Full Bilingual</td>
<td>Full Bilingual</td>
</tr>
<tr>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>Partial</td>
<td>Partial</td>
</tr>
<tr>
<td>Limited</td>
<td>Limited</td>
</tr>
</tbody>
</table>

These contrasting LGP and LSP language proficiencies and proficiency matches introduce further and different communication dynamics and adjustment patterns into parallel and non-parallel zones. To differentiate the varying LGP and LSP competencies, the zone-associated width for the combination of the patterns is indicated accordingly. For instance, Patterns 1, 2, 3 illustrate not only the combination of interactants with full LGP competency but varying LSP competencies, but also show that the zone width of the LGP competency remains the same but the zone width for LSP competencies varies. The communication dynamics of each pattern of language match between interactants is shown by the zone width for both LGP and LSP competencies in all 18 patterns. In parallel zones, interactants possess equivalent LGP and LSP competencies, and thus they begin in the interaction and the process of adjusting...
their communication partner from equivalent (parallel) language proficiency positions. In non-parallel zones, interactants begin from unequal (non-parallel) LGP or LSP proficiency position, which sets off contrasting patterns of language adjustments as interactants with higher LGP or LSP competencies may have to decide whether to accommodate toward their lower proficiency communication partners.

In contrast, in non-parallel communication zones, the unequal LSP competency combinations of interactants affect the LSP zone width and so determine the extent to which the topic and vocabulary need to be mutually adjusted and accommodated. For example, non-parallel communication zone Patterns 11, 14, and 17 carry wider LSP zone width than Patterns 10, 12, 13, 15, 16, and 18. This is because Patterns 11, 14, and 17 are the language proficiency matches between interactants possessing full and partial LSP competencies. While Patterns 10, 13, 16 are the LSP language proficiency matches of interactants with full and limited LSP competencies, Patterns 12, 15, 18 show LSP language proficiency matches of interactants with partial and limited LSP competencies. For Patterns 10, 13, 16, although one of the interactants possesses full fluency in LSP competency, this individual needs to accommodate to his/her communication partner who only possesses limited LSP competency. Similarly, the partial LSP individual also needs to accommodate to the individuals with limited LSP competencies as shown in Patterns 12, 15, 18. Based on this analysis, we consider the communication zone width between 10, 13, 16 and 12, 15, 18 to be similar even though in Patterns 13 and 16 the interactants possess full LSP competency.

The adjustment processes in the non-parallel patterns (see Figure 2 for Patterns 10-18) dictates that the interactants have to concurrently adjust their language levels between LGP and LSP dialogs. Depending on the language proficiency position (either high or low in LGP or LSP), the interactants must carefully adjust their complexity of language use when switching between LGP and LSP deliberations.

Differing patterns of LGP and LSP competency matches offer varying information exchange possibilities. Although LGP competency may determine maximum information exchange possibilities, it may not be relevant in ascertaining exchange possibilities among interactants in LSP dialogs. In other words, high LGP competency can compensate the deficiency of LSP competency but is not necessary a determining factor. For example, among the nine parallel communication zones, interactants from parallel Patterns 1, 4, 7 possess the same zone width in LSP competencies despite the fact that these interactants have varying LGP competencies (in Pattern 1, the interactants possess full LGP competency as compared to partial LGP competency in Pattern 4, and limited LGP in Pattern 7). Similarly, despite varying LGP competencies, interactants with partial LSP competency in Patterns 2, 5, and 8 also possess the same zone width in LSP competencies, as do interactants with limited LSP competencies in Patterns 3, 6, and 9.

In language match positions where the interactants possess full LSP but varying LGP competencies (Patterns 1, 4, and 7), theoretically the interactants have the requisite competencies to fully exchange LSP-related information. However, the information exchange may still be affected by the actual LGP competency of the interactants. So, information exchanges in Patterns 1 and 4 can be wider than that of Pattern 7. Pattern 7, in practice, can exist but the scope of the information exchange tend to be restricted to the LSP boundaries (zone width). Among these three patterns, Pattern 1 interactants have the best communication potential to be successful as compared to Patterns 4 and 7, while the full LSP competency can make up for the language deficiency of the LGP of Pattern 4. In contrast, interactants with low LGP competency, as in Pattern 7, can still communicate effectively provided the deliberations remain within the LSP zone width.
For instance, order takers in most fast-food restaurants in Hong Kong possess limited LGP competency in English, but can often function properly in taking orders in English, provided the information exchange is within their range of training, such as names of food items, procedure of order-taking, etc. To simplify and enhance the communication effectiveness, each food item is assigned a number. For example, the breakfast menu in McDonald’s contains 9 items and breakfast No. 3 contains hotcakes, sausage and drink (coffee or tea). These items are fixed menus, so when ordering, the customers simply tell the front-line staff the number without verbal descriptions. In this case, even though the order taker’s LGP competency is low (Pattern 7), this individual still can function well in taking orders. But a problem may occur when a new menu is introduced, and the related number is not available. The order takers with limited LGP but full or partial LSP competency (Patterns 7 or 8) may not be able to handle the order, because the terms or vocabulary of the new menu is out of their LSP zone width. For example, McDonald’s recently introduced raisin scones in its breakfast menu. It can be supposed that “raisin” and “scones” are new vocabulary for these front line staff because when one of the authors ordered raisin scones, he was told, “no raisin scones were available today”. Two seconds later, he saw that a Cantonese customer in the next line had a raisin scone on his plate. This example illustrates that the success of LSP information exchange can be achieved with limited LGP individuals as long as the communication exchange does not exceed the zone width.

We now turn to a discussion of how LGP competency can compensate the LSP deficiency by examining the difference in communication dynamics between interactants Patterns 1, 2, 3. The interactants in these patterns possess full LGP competencies but varying LSP competencies. Of these three patterns, Pattern 1 interactant has best communication potential (full in LGP and LSP competencies) to be successful, followed by Pattern 2 (partial in LSP competencies) and Pattern 3 (limited in LSP). Although Patterns 2 and 3 interactants possess less proficient LSP competencies than Pattern 1, the full LGP competency to a large extent can compensate for their LSP deficiency, provided the topics which do not involve much LSP.

It is necessary to distinguish LGP competency from LSP competency, but we recognize that there are differing degrees of common core between LGP and LSP in different professional fields (see Bhatia, 1993; Robinson, 1991). Where LSP is represented more by mathematical symbols (engineering operations management) than verbal statements (literature, law), interactants with low LGP competency can still successfully exchange messages. That is, their LSP competency can provide the connecting language to support and facilitate LGP dialogs. Thus, Pattern 7 interactants may have better communication potential than Pattern 3 in dealing with technical-related topics. As such, Pattern 3 interactant who possess full LGP competency but limited LSP competency may not be able to actively participate in technical or subject-specific discussions as much as individuals in Pattern 7, even though the Pattern 7 individual may not be able to freely express his ideas verbally because of his limited LGP competency. It follows that a Pattern 4 interactant with partial LGP competency but full LSP competency has better communication potential than either a Pattern 2 or Pattern 3 interactant when the discussion topics are field-specific. As the full LSP competency can compensate the LGP deficiency, Pattern 4 interactants with full LSP competency are more likely to interact more effectively in complex technical dialogs as compared to interactants in Patterns 2 and 3 who possess full LGP competencies, but partial or limited LSP competencies. On the contrary, in the non-science and technical fields, LGP competency takes on more importance when exploring new and complex ideas, problem solving, and interrelated multi-dimensional subjects; consequently, individuals need higher LGP competencies in order to adequately express and communicate LSP topics.
LGP proficiency also plays a key role in non-parallel communication zones. Interactants in Patterns 11, 14 and 17 possess either full or partial LSP competencies but varying LGP competencies. Pattern 11 interactants have better communication potential to be successful as their full LGP competency can compensate for the LSP language deficiency. In contrast, for Pattern 17 interactants to communicate effectively, they need computer or other props (see discussion on link-pin channel patterns) to make up for their LGP deficiency.

Similarly, the full LGP competency of interactants in Patterns 10 and 12 can compensate their LSP competency differences even though the LSP communication zone width between these two patterns is similar. In either of these two patterns, one of the interactants has limited LSP competency, so the communication zone width cannot exceed the limited LSP competency as a full or partial LSP communicator must accommodate to the limited LSP communicator. Likewise, the communication potential for patterns 16 and 18 are very limited. These interactants are not only restricted to the zone width of their LSP competency, but are also limited by their unilingual LGP competencies. In other words, the scope for effective communication in Patterns 16 and 18 is very limited and mirrors the scope limited in parallel zone for communication in Pattern 9.

References

Dr. Richard D. Babcock
School of Business and Management
University of San Francisco
2130 Fulton Street
San Francisco, CA 94117-1080

E-mail: babcockr@usfca.edu