**Tight framelets and fast framelet filter bank transforms on manifolds.**Applied and Computational Harmonic Analysis.

- Che Z. and Zhuang, X. (2018.08)
**Digital affine shear filter banks with 2-Layer structure and their applications in image processing.**IEEE Transactions on Image Processing. 27 (8): 3931 - 3941. - Han, B., Jiang, Q. T., Shen, Z. W., and Zhuang, X. (2018.01)
**Symmetric canonical quincunx tight framelets with high vanishing moments and smoothness.**Mathematics of Computation. 87 (309): 347 - 379. - Chui, C. K., Mhaskar, H. N., and Zhuang, X. (2018.01)
**Representation of functions on big data associated with directed graphs.**Applied and Computational Harmonic Analysis. 44 (1):165 - 188. - Zhuang, X. (2017.07)
**Quincunx fundamental refinable functions in arbitrary dimensions.**Axioms 2017, 6(3): 20. - Zhuang, X. (2016.09)
**Digital affine shear transforms: fast realization and applications in image/video processing.**SIAM Journal on Imaging Sciences. 9 (3):1437 - 1466. - Han, B., Zhao, Z., and Zhuang, X. (2016.09)
**Directional tensor product complex tight framelets with low redundancy.**Applied and Computational Harmonic Analysis. 41 (2): 603 - 637. - Chui, C. K., De Villiers, J., and Zhuang, X. (2016.07)
**Multirate systems with shortest spline-wavelet filters.**Applied and Computational Harmonic Analysis. 41 (1): 266 - 296. - Han, B. and Zhuang, X. (2015.09)
**Smooth affine shear tight frames with MRA structures.**Applied and Computational Harmonic Analysis. 39 (2):300-338. - Bodmann, B. G., Kutyniok, G., and Zhuang, X. (2015.01)
**Gabor shearlets.**Applied and Computational Harmonic Analysis. 38 (1):87-114. - Tan, C. and Zhuang X. (2014.06)
**The common Hardy space and BMO space for singular integral operators associated with isotropic and anisotropic homogeneity.**Journal of Mathematical Analysis and Applications. 414: 480-487. - King, E. J., Kutyniok, G., and Zhuang, X. (2014.02)
**Analysis of inpainting via clustered sparsity and microlocal analysis.**Journal of Mathematical Imaging and Vision. 48 (2): 205-234. - Han, B. and Zhuang, X. (2013.01)
**Algorithms for matrix extension and orthogonal wavelet filter banks over algebraic number fields.**Mathematics of Computation. 82 (281): 459-490. - Specktor, S. and Zhuang, X. (2012)
**Asymptotic Bernstein type inequalities and estimation of wavelet coefficients.**Methods and Applications of Analysis. 19 (3): 289-312. - Kutyniok, G., Shaharm, M., and Zhuang, X. (2012)
**ShearLab: A rational design of a digital parabolic scaling algorithm.**SIAM Journal on Imaging Sciences. 5 (4):1291-1332. - Mo, Q. and Zhuang X. (2012)
**Matrix splitting with symmetry and dyadic framelet filter banks over algebraic number fields.**Linear Algebra and its Applications. 437(10): 2650-2679. - Zhuang, X. (2012)
**Matrix extension with symmetry and construction of biorthogonal multiwavelets with any integer dilation.**Applied and Computational Harmonic Analysis. 33(2): 159-181. - Chui, C. K., Han, B., and Zhuang, X. (2012)
**A dual-chain approach for bottom-up construction of wavelet filters with any integer dilation.**Applied and Computational Harmonic Analysis. 33(2): 204-225. - Han, B. and Zhuang, X. (2010)
**Matrix Extension with symmetry and its applications to symmetric orthonormal multiwavelets.**SIAM Journal on Matrix Analysis and Applications. 42(5): 2297-2317. - Han, B. and Zhuang, X. (2009)
**Analysis and construction of multivariate interpolating refinable function vectors.**Acta Applicandae Mathematicae. 107: 143-171. - Han, B., Kwon, S. G. and Zhuang, X. (2009)
**Generalized interpolating refinable function vectors.**Journal of Computational and Applied Mathematics. 227: 254-270. - Zhuang, X. and Dai, D. Q. (2007)
**Improved discriminate analysis for high dimensional data and its application to face recognition.**Pattern Recognition. 40: 1570-1578. - Zhuang, X., Dai, D. Q. and Yuen, P. C. (2005)
**Face recognition by inverse Fisher discriminant features.**Lecture notes in Computer Science.3832: 92-98. - Zhuang, X. and Dai, D. Q. (2005)
**Inverse Fisher discriminate criteria for small sample size problem and its application to face recognition.**Pattern Recognition. 38: 2129-2194.

##### back to top

**Affine shear tight frames with two-layer structure.**Wavelets and Sparsity XVII, SPIE Proc. 10394-22.

**Digital Affine Shear Filter Banks with 2-Layer Structure.**2017 International Conference on Sampling Theory and Applications (SampTA), Tallinn, Estonia. 575-579.

**Smooth affine shear tight frames: digitization and applications.**Wavelets and Sparsity XVI, SPIE Proc. 9597-09.

**Coarse quantization with the fast digital shearlet transform.**Wavelets and Sparsity XIV, SPIE Proc. 8138, 8138OZ-1 - 8138OZ-10.

**Analysis of data separation and recovery problems using clustered sparsity.**Wavelets and Sparsity XIV, SPIE Proc. 8138, 813818-1 - 813818-11.

**A rational design of a digital shearlet transform.**The 9th International Conference on Sampling Theory and Applications (SampTA'11), Singapore.

**Matrix extension with symmetry and its applications.**Approximation Theory XIII: San Antonio 2010, M. Neamtu and L.L. Schumaker eds. Springer.

##### back to top

**Digital Shearlet Transforms.**Book chapter in "Shearlets: Multiscale Analysis for Multivariate Data". Springer.

##### back to top

**Interpolating refinable function vectors and matrix extension with symmetry.**University of Alberta Library.